Page 184 - Design of Reinforced Masonry Structures
P. 184

4.48                       CHAPTER FOUR

                                    ,
                              bd =  12 000 M u
                                2
                                     φ k
                                      n
                                          .
                                       (
                                    ,
                                 =  12 000 63 05)  =  2710 5 iin. 3
                                                  .
                                     279 14
                                        .
                                               .
                                       .
                               d =  2710 5  =  2710 5  = 18 85  in.
                                                    .
                                     b       763
                                              .
                With the assumed value of total beam depth, h, equal 24 in., the design depth
                d would be 24 − 4 in. (cover) = 20 > 18.85 in. So, d = 20 in. as assumed is
                adequate. Calculate the required amount of reinforcement based on d = 20 in.
                From Eq. (4.13)
                                           ⎛  a⎞
                                 φM =  φA f d −  ⎟
                                         s y ⎜
                                    n      ⎝   ⎠ 2
                      ⎛   a⎞
                Assume d −  ⎟ ≈095.  d  [Eq. (4.78)] and estimate the area of tension reinforce-
                      ⎜
                      ⎝
                ment, A . s  ⎠ 2
                                  φM =  M = 63 05 k-ft
                                             .
                                     n   u
                             (63.05)(12) = 0.9A  (60)[(0.95)(20)]
                                           s
                                    A  = 0.74 in. 2
                                     s
                                      2
                                                                        2
                Try one No. 8 bar, A  = 0.79 in. . Calculate M  with d = 20 in. and A  = 0.79 in. .
                              s                 u               s
                From Eq. (4.9)
                               Af      (.  ) (
                                        079 60)
                          a =   sy  =            = 3.888 in.
                                           )
                                      .
                                            (
                             080 fb ′  080 20 763)
                                        (
                              .
                                          .
                                             .
                                 m
                From Eq. (4.13),
                             φM =  φA f  ⎛ d −  a ⎞
                               n    s y ⎝  ⎠ 2
                                            ⎛
                                                  .
                                        )( )
                                 = 09 .  (079 60 20 −  388 ⎞ ⎠
                                      .
                                            ⎝
                                 = = 770 4 k-in.  = 64.2 k-ft 2
                                     .
                             φM = 64 2 k-ft  >  M = 63 05 k-ft     OK
                                                .
                                    .
                               n            u
                Check the M / V d  ratio.
                           u v
                         u
                                     3 142 12 67)
                            V =  wL  =  (.  )( .  = 19 9 . kips
                                 u
                             u
                                 2        2
                                63
                           M    (.005 12)( )
                                            >
                             u  =       = 19 10
                                           .
                                              .
                                 19 9 20)
                          Vd    (.  ) (
                           u  v
   179   180   181   182   183   184   185   186   187   188   189