Page 67 - Design of Solar Thermal Power Plants
P. 67

2.4 CALCULATING METHODS FOR SOLAR POSITION      59

              For a vertical surface with b ¼ 90 , Eq. (2.10) turns into:

             cos q ¼ sin d cos f cos g þ cos d sin f cos g cos u þ cos d sin g sin u
                                                                       (2.11)
              For a surface that revolves by surrounding a horizontal eastewest axis,
           only adjusting the slope during the midday so that the incident solar
           radiation can be perpendicular to the surface, the corresponding solar
           incidence angle calculation during daytime is as follows:
                                                2
                                         2
                               cos q ¼ sin d þ cos d cos u            (2.12a)
              The corresponding daily fixed surface slope angle is:
                                       b ¼ jf   dj                    (2.12b)
              The azimuth angle of surface normal is 0 or 180 degrees, which is
           determined by local latitude and solar declination angle; namely:
                                   g ¼ 0 ;  ifðf   dÞ  0

                                                                      (2.12c)

                                  g ¼ 180 ; ifðf   dÞ < 0
              For a surface that continuously revolves by surrounding a horizontal
           eastewest axis and is required to revolve to the point where the solar
           incidence angle is of minimum value at a specified time, the corre-
           sponding incidence angle equation is:

                           q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                              p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                   2    2             2    2
                    cos q ¼  1   sin q z sin g ¼  1   cos d sin u     (2.13a)
                                          s
              The corresponding equation for the surface slope angle is:
                                  tan b ¼ tan q z jcos g j            (2.13b)
                                                    s
              The azimuth angle of surface normal is 0 or 180 degrees, namely:
                                   g ¼ 0 ;  if jg j   90

                                                s
                                                                      (2.13c)
                                  g ¼ 180 ; if jg j > 90

                                                s
              For a surface that continuously revolves by surrounding a horizontal
           northesouth axis and is required to revolve to the point where the solar
           incidence angle is of minimum value at a specified time, the corre-
           sponding incidence angle equation is:
                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                       3
                                          2
                                                 2
                              cos q ¼  cos q z þ cos d sin u          (2.14a)
              The corresponding equation for the surface slope angle is:
                                tan b ¼ tan q z jcosðg   g Þj         (2.14b)
                                                     s
   62   63   64   65   66   67   68   69   70   71   72