Page 124 - Determinants and Their Applications in Mathematical Physics
P. 124

4.8 Hankelians 1  109

          4.8.5  Turanians
          A Hankelian in which a ij = φ i+j−2+r is called a Turanian by Karlin and
              o
          Szeg¨ and others.
            Let
                   
                    |φ m+r | n ,               0 ≤ m ≤ 2n − 2,
                   
                    |φ m | n ,                 r ≤ m ≤ 2n − 2+ r,
                   

                   
                   
                               ···
                   
             (n,r)
           T     =      φ r        φ n−1+r                          (4.8.17)
                        ......................

                   
                   

                   
                    φ n−1+r
                              ··· φ 2n−2+r
                                          n
                      C r C r+1 C r+2 ··· C n−1+r .
                   

          Theorem 4.28.
                         (n,r+1)
                         T       T  (n,r)    (n+1,r−1)  (n−1,r+1)
                          (n,r)            = T      T        .
                        T       T
                                  (n,r−1)
          Proof. Denote the determinant by T. Then, each of the Turanian ele-
          ments in T is of order n and is a minor of one of the corner elements in
          T  (n+1,r−1) . Applying the Jacobi identity (Section 3.6),
                                    (n+1,r−1)
                                   T 11      T 1,n+1

                                              (n+1,r−1)
                                   (n+1,r−1)  (n+1,r−1)
                             T =
                                  T          T
                                   n+1,1      n+1,n+1

                               = T  (n+1,r−1) T (n+1,r−1)
                                           1,n+1;1,n+1
                               = T  (n+1,r−1) T (n−1,r+1) ,
          which proves the theorem.
            Let
                               A n = T  (n,0)  = |φ i+j−2 | n ,
                               F n = T  (n,1)  = |φ i+j−1 | n ,
                               G n = T  (n,2)  = |φ i+j | n .       (4.8.18)
          Then, the particular case of the theorem in which r = 1 can be expressed
          in the form
                                                    2
                               A n G n − A n+1 G n−1 = F .          (4.8.19)
                                                    n
          This identity is applied in Section 4.12.2 on generalized geometric series.
            Omit the parameter r in T (n,r)  and write T n .
          Theorem 4.29. For all values of r,
                              (n)
                             T 11  T 1,n+1     (n+1)

                                   (n+1)
                              (n)  (n+1)    − T n T 1n;1,n+1  =0.
                              T n1  T n,n+1
   119   120   121   122   123   124   125   126   127   128   129