Page 126 - Determinants and Their Applications in Mathematical Physics
P. 126

4.8 Hankelians 1  111

          4.8.6  Partial Derivatives with Respect to φ m
          In A n , the elements φ m , φ 2n−2−m ,0 ≤ m ≤ n − 2, each appear in (m +1)
          positions. The element φ n−1 appears in n positions, all in the secondary
          diagonal. Hence, ∂A n /∂φ m is the sum of a number of cofactors, one for
          each appearance of φ m . Discarding the suffix n,
                                 ∂A
                                      =        A pq .               (4.8.23)
                                        p+q=m+2
                                 ∂φ m
          For example, when n ≥ 4,
                             ∂A
                                 =
                             ∂φ 3       A pq
                                   p+q=5
                                 = A 41 + A 32 + A 23 + A 14 .
          By a similar argument,

                                     =         A ip,jq ,            (4.8.24)
                                ∂A ij
                                       p+q=m+2
                                ∂φ m

                                     =         A irp,jsq .          (4.8.25)
                              ∂A ir,js
                                       p+q=m+2
                               ∂φ m
          Partial derivatives of the scaled cofactors A ij  and A ir,js  can be obtained
          from (4.8.23)–(4.8.25) with the aid of the Jacobi identity:
                             ∂A ij
                                  = −         A A pj                (4.8.26)
                                               iq
                                      p+q=m+2
                             ∂φ m

                                             A ij  A
                                                    iq
                                  =                     .           (4.8.27)
                                             A pj
                                                   •
                                    p+q=m+2
          The proof is simple.
          Lemma.

                                             A ij  A is  A  iq
                          ∂A ir,js
                                =            A rj  A rs  A  rq    ,  (4.8.28)

                                  p+q=m+2 A  pj  A ps  •
                           ∂φ m

          which is a development of (4.8.27).
          Proof.
                         ∂A ir,js  1                  ∂A
                               =      A  ∂A ir,js
                                  A 2   ∂φ m  − A ir,js  ∂φ m
                          ∂φ m
                                  1
                               =
                                  A 2   AA irp,jsq − A ir,js A pq
                                     p,q


                               =     A irp,jsq  − A ir,js A pq  .   (4.8.29)
                                  p,q
   121   122   123   124   125   126   127   128   129   130   131