Page 125 - Determinants and Their Applications in Mathematical Physics
P. 125

110   4. Particular Determinants

          Proof. The identity is a particular case of Jacobi variant (A) (Sec-
          tion 3.6.3),

                              (n)
                             T    T  (n+1)     (n+1)

                             ip    i,n+1     − T n T  =0,           (4.8.20)
                              (n)  (n+1)       ij;p,n+1
                              T   T
                             jp    j,n+1
          where (i, j, p)=(1,n, 1).
            Let
                                    A n = T (n,r) ,
                                   B n = T (n,r+1) .

          Then Theorem 4.29 is satisfied by both A n and B n .
          Theorem 4.30. For all values of r,
                 (n+1)      (n+1)
          a. A n B    − B n A    + A n+1 B n−1 =0.
                 n+1,n      n+1,n
                   (n+1)      (n)
          b. B n−1 A    − A n B n,n−1  + A n−1 B n =0.
                   n+1,n
          Proof.
                                              (n+1)
                                  B n =(−1) A     ,
                                           n
                                              1,n+1
                                (n+1)         (n+1)
                              B      =(−1) A  n1  ,
                                           n
                                n+1,n
                                B n−1 =(−1) n−1 A (n)
                                                1n
                                              (n+1)
                                     =(−1) A           ,
                                           n
                                              n,n+1;1,n+1
                              (n+1)     (n)
                            A 1n;n,n+1  = A 1,n−1
                                     =(−1) n−1 B (n)  .             (4.8.21)
                                                n,n−1
          Denote the left-hand side of (a) by Y n . Then, applying the Jacobi identity
          to A n+1 ,

                                (n+1)
                               A       A (n+1)          (n+1)

                       n        n1      n,n+1     − A n+1 A
                                (n+1)  (n+1)            n,n+1;1,n+1
                   (−1) Y n =
                              A       A

                                n+1,1  n+1,n+1
                           =0,
          which proves (a).
            The particular case of (4.8.20) in which (i, j, p)=(n, 1,n) and T is
          replaced by A is

                                  A  (n+1)
                            A n−1              (n+1)
                                   n,n+1     − A n A   =0.          (4.8.22)
                             (n)   (n+1)       n1;n,n+1
                           A      A
                                   1,n+1
                             1n
          The application of (4.8.21) yields (b).
            This theorem is applied in Section 6.5.1 on Toda equations.
   120   121   122   123   124   125   126   127   128   129   130