Page 136 - Determinants and Their Applications in Mathematical Physics
P. 136

4.9 Hankelians 2  121

          Proof. The sum formula for T can be expressed in the form
                            n
                                       (n,r)       (n+1,r)
                              ψ r+i+j−1 T   = −δ in T    ,          (4.9.10)
                                       ij          n+1,n
                           j=1

                                                                 T
           C = (r+j)ψ r+j (r+j +1)ψ r+j+1 ··· (r+j +n−1)ψ r+j+n−1  . (4.9.11)
            j
                                                                 n
          Let
                       ∗
                     C = C − (r + j)C j+1
                       j    j

                                                             T
                        = 0 ψ r+j+1 2ψ r+j+2 ··· (n − 1)ψ r+j+n−1  .  (4.9.12)
                                                             n
          Differentiating the columns of T,
                                          n


                                     T =    U j ,
                                         j=1
          where


                     U j = C 1 C 2 ··· C C j+1 ··· C n ,  1 ≤ j ≤ n.


                                     j
                                                  n
          Let

                      V j = C 1 C 2 ··· C C j+1 ··· C n ,  1 ≤ j ≤ n
                                     ∗


                                     j
                                                  n
                           n

                        =    (i − 1)ψ r+i+j−1 T ij .                (4.9.13)
                          i=2
          Then, performing an elementary column operation on U j ,
                U j = V j ,  1 ≤ j ≤ n − 1

                U n = C 1 C 2 ··· C n−1 C

                                     n

                   = C 1 C 2 ··· C n−1 C  ∗    +(r + n) C 1 C 2 ··· C n−1 C n+1


                                     n
                                 (n+1,r)
                   = V n − (r + n)T    .                            (4.9.14)
                                 n+1,n
          Hence,
                                          n


                    T +(r + n)T  (n+1,r)  =
                                n+1,n       V j
                                         j=1
                                          n        n

                                       =    (i − 1)  ψ r+i+j−1 T ij
                                         j=1      j=1
                                                   n
                                            (n+1,r)
                                       = −T
                                           n+1,n     (i − 1)δ in
                                                  i=2
                                                  (n+1,r)
                                       = −(n − 1)T      .
                                                  n+1,n
          The theorem follows.
   131   132   133   134   135   136   137   138   139   140   141