Page 139 - Determinants and Their Applications in Mathematical Physics
P. 139

124   4. Particular Determinants

          Identities 1.
                          n

                    V nr =   K ,   1 ≤ r ≤ n.                       (4.10.4)
                              rj
                              n
                         j=1
                           (−1) n+r (h + r + n − 1)!
                    V nr =                       ,  1 ≤ r ≤ n.      (4.10.5)
                          (h + r − 1)!(r − 1)!(n − r)!
                          (−1) n+1 (h + n)!
                    V n1 =              .                           (4.10.6)
                            h!(n − 1)!
                            (h +2n − 1)!
                   V nn =                  .                        (4.10.7)
                          (h + n − 1)!(n − 1)!
                   K  rs  =  V nr V ns  ,  1 ≤ r, s ≤ n.            (4.10.8)
                          h + r + s − 1
                     n
                   K r1  =  V nr V n1 .                             (4.10.9)
                          h + r
                     n
                                     V  2
                          K n−1
                   K  nn  =    =      nn   .                       (4.10.10)
                                  h +2n − 1
                    n
                           K n
                                        r1
                          (h + r)(h + s)K K s1
                   K  rs  =            n   n  .                    (4.10.11)
                           (h + r + s − 1)V n1
                     n                    2
                                  2
                           (n − 1)! (h + n − 1)! 2
                    K n =                       K n−1 .            (4.10.12)
                          (h +2n − 2)!(h +2n − 1)!
                                          2
                          [1!2!3! ··· (n − 1)!] h!(h + 1)! ··· (h + n − 1)!
                    K n =                                        . (4.10.13)
                             (h + n)!(h + n + 1)! ··· (h +2n − 1)!
                         (n − r)V nr +(h + n + r − 1)V n−1,r =0.   (4.10.14)
                             n
                                         n(n−1)/2
                                V nr =(−1)      .                  (4.10.15)
                         K n
                            r=1
          Proof. Equation (4.10.4) is a simple expansion of V nr by elements from
          row r. The following proof of (4.10.5) is a development of one due to Lane.
            Perform the row operations

                          R = R i − R r ,  1 ≤ i ≤ n,  i  = r,
                            i
          on K n , that is, subtract row r from each of the other rows. The result is
                                     K n = |k | n ,

                                            ij
          where
                    k     = k rj ,
                     rj

                    k = k ij − k rj
                      ij
                               r − i

                       =                 k ij ,  1 ≤ i, j ≤ n,  i  = r.
                           h + r + j − 1
          After removing the factor (r − i) from each row i, i  = r, and the factor
          (h + r + j − 1) −1  from each column j and then canceling K n the result can
   134   135   136   137   138   139   140   141   142   143   144