Page 143 - Determinants and Their Applications in Mathematical Physics
P. 143

128   4. Particular Determinants
                                   n−1
                                             n − 1  (h + n + i)!  h+i+1
                                 =    (−1) i                  x
                                               i    (h + i + 1)!
                                   i=0

                                    n
                                          j−1  n − 1  (h + n + j − 1)!
                                 =    (−1)                          x h+j
                                               j − 1     (h + j)!
                                   j=1
                                          2
                                   (n − 1)! h!x  h+1    1j j−1
                                                  n
                                 =                  K x     .
                                      (h + n)!
                                                 j=1
          The theorem follows.
            Let
                             n
                                 (n)   j−1

                  S n (x, h)=  K   (−x)
                                 nj
                            j=1

                              k 11    k 12   k 13  ···    k 1n

                              k 21    k 22   k 23  ···    k 2n
                          =   ......................................   .



                              k n−1,1  k n−1,2  k n−1,3  ···  k n−1,n
                               1      −x     x     ··· (−x)
                                              2             n−1
                                                                n
          The column operations
                            C = C j + xC j−1 ,  2 ≤ j ≤ n,

                              j
          remove the x’s from the last row and yield the formula

                                           x           1

                    S n (x, h)=(−1)  n+1         +              .
                                        h + i + j − 1  h + i + j
                                                            n−1
          Let

                                         1+ x          1

                    T n (x, h)=(−1)  n+1         −              .
                                       h + i + j − 1  h + i + j
                                                            n−1
          Theorem 4.38.
                       2
             (h + n − 1)! S n (x, h)  h+n−1  n−1     h+n−1
          a.                     = D      [x   (1 + x)    ].
              h!(n − 1)!  S n (0,h)
             (h + n − 1)! T n (x, h)  h+n−1  h+n−1    n−1
          b.                    = D      [x     (1 + x)  ].
              h!(n − 1)! T n (0,h)
          Proof.
                                  (n)
                       S n (0,h)= K n1
                                K n (h)V nn V n1
                              =
                                    h + n

                                                  h + n − 1
                                    n+1
                              =(−1)                          ,
                                                      h
                                       K n (h)V nn
   138   139   140   141   142   143   144   145   146   147   148