Page 148 - Determinants and Their Applications in Mathematical Physics
P. 148

4.10 Henkelians 3  133

                                     =   c ij  .
                                       2i − 1
          After removing the factor (2i − 1) −1  from row i,1 ≤ i ≤ n, the result is
                                                     x


                                                     x
                                                      3

                                                     x

                            n                         5
                       U =  2 n!          [c ij ] n           .
                           (2n)!                     ···
                                                   x
                                                    2n−1

                                 111       ···  1    •

                                                         n+1
          Transposing,

                                                         1

                                                         1

                          n
                    U =  2 n!            [−c ij ] n      1      .
                        (2n)!                            ···

                                                         1
                              xx     x     ···   x       •
                                   3   5           2n−1
                                                            n+1
          Now, change the signs of columns 1 to n and row (n + 1). This introduces
          (n + 1) negative signs and gives the result
                                             2 n!
                                     (−1) n+1 n
                                 U =             Z.                (4.10.27)
                                         (2n)!
          Perform the column operations
                             C = C j + C n+1 ,  1 ≤ j ≤ n,

                              j
          on V . The result is that [a ij ] n is replaced by [a ] n , where
                                                   ∗
                                                   ij
                                              1
                                  a = a ij +      .
                                   ∗
                                            2i − 1
                                   ij
          Perform the row operations
                                    x 2i−1

                          R = R i −      R n+1 ,  1 ≤ i ≤ n,
                                    2i − 1
                            i
                                               ∗∗
          which results in [a ] n being replaced by [a ] n , where
                          ∗
                          ij                   ij
                                           x 2(i+j−1)
                                       ∗
                                 a ∗∗  = a −
                                             2i − 1
                                  ij   ij
                                    =   c ij  .
                                      2i − 1
          After removing the factor (2i − 1) −1  from row i,1 ≤ i ≤ n, the result is
                                         2 n!
                                          n
                                    V =       Z.                   (4.10.28)
                                         (2n)!
          The theorem follows from (4.10.27) and (4.10.28).
   143   144   145   146   147   148   149   150   151   152   153