Page 146 - Determinants and Their Applications in Mathematical Physics
P. 146

4.10 Henkelians 3  131

                                           2 2(i+j−1)  2 2(i+j−1)
                     =         A is A jr  [p x      + q y       − 1]
                            (2i − 1)(2j − 1)
                       i,j,r,s

                     =      (i + j − 1)a ij A is A rj
                              (2i − 1)(2j − 1)
                       i,j,r,s

                                1        1
                       1

                     =              +
                       2      2i − 1  2j − 1  a ij A is A rj
                        i,j,r,s

                     =      a ij A is A rj
                             2i − 1
                       i,j,r,s

                     =      A is
                          2i − 1       a ij A rj
                                 r
                        i,s         j

                     = A     A is
                            2i − 1   δ ir
                         i,s       r
                     = − AW
          which proves the theorem.
          Theorem 4.40.
                                                 2
                             2
                               2
                                      2
                                         2
                            p V (x)+ q V (y)= W − AW.
            This theorem resembles Theorem 4.39 closely, but the following proof
          bears little resemblance to the proof of Theorem 4.39. Applying double-sum
          identity (D) in Section 3.4 with f r = r and g s = s − 1,
                    2 2(r+s−1)
                                2 2(r+s−1)


                   p x       + q y       − 1 A A rj  =(i + j − 1)A ,
                                               is
                                                                ij
             r  s

                   is 2s−1
                                                                 rj 2r−1
                                 rj 2r−1
                                                   is 2s−1
           p 2     A x          A x      + q 2    A y          A y
                s            r                 s             r


                                                    ij
                    −     A is     A rj  =(i + j − 1)A .
                        s        r
          Put
                                            ij 2j−1
                                 λ i (x)=  A x     .
                                         j
          Then,
                               2
                 2
                p λ i (x)λ j (x)+ q λ i (y)λ j (y) − λ i (1)λ j (1)=(i + j − 1)A .
                                                                 ij
          Divide by (2i − 1)(2j − 1), sum over i and j and note that
                                     λ i (x)  V (x)
                                          = −      .
                                    2i − 1     A
                                  i
   141   142   143   144   145   146   147   148   149   150   151