Page 142 - Determinants and Their Applications in Mathematical Physics
P. 142

4.10 Henkelians 3  127

                                                         K j1
                                     = V 1 − (r − 1)
                                                     h + r + j − 1
                                                   j
                                     = V 1 − (r − 1)δ r1 ,  1 ≤ r ≤ n.
          The second term is zero. The result follows.
            The proof of (4.10.18) when s  = r follows from the identity

                       1                 1         1              1
                                     =                    −
           (h + r + j − 1)(h + s + j − 1)  s − r  h + r + j − 1  h + s + j − 1
          and (4.10.15). When s = r, the proof follows from (4.10.8) and (4.10.16):

                                                   K  rs
                                         =                 =1.
                                 V s
                           (h + r + s − 1) 2   h + r + s − 1
                     V r
                        s                    s
          To prove (4.10.19), apply (4.10.4) and (4.10.16):

                        jK 1j                h + r − 1
                                 =      1 −              K  1j
                     h + r + j − 1          h + r + j − 1
                   j                j
                                 = V 1 − hδ r1 − (r − 1)δ r1 ,  1 ≤ r ≤ n.
          The third term is zero. The result follows.
            Equation (4.10.20) follows from (4.10.4) and the double-sum identity (C)
          (Section 3.4) with f r = r and g s = s + h − 1, and (4.10.21) follows from
          the identity (4.10.9) in the form

                                 jK  1j  = V 1 V j − hK  1j
          by summing over j and applying (4.10.4) and (4.10.20).


          4.10.2  Three Formulas of the Rodrigues Type
          Let
                               n
                                    1j j−1
                       R n (x)=   K x
                               j=1
                                    1    x   x 2  ··· x n−1


                                1   k 21  k 22  k 23  ···  k 2n
                            =                                .
                               K n   ..........................

                                   k n1  k n2  k n3  ···  k nn
                                                           n
          Theorem 4.37.
                                (h + n)!     n−1           n−1
                     R n (x)=              D    [x h+n (1 − x)  ].
                                    2
                             (n − 1)! h!x h+1
          Proof. Referring to (4.10.9), (4.10.5), and (4.10.6),
                                   n−1
                                             n − 1   n−1
              n−1
                            n−1


            D     x h+n (1 − x)  =    (−1) i       D    (x h+n+i )
                                               i
                                   i=0
   137   138   139   140   141   142   143   144   145   146   147