Page 144 - Determinants and Their Applications in Mathematical Physics
P. 144

4.10 Henkelians 3  129

                                          n          j−1
                                             V nj (−x)
                                                         .
                                             h + n + j − 1
                      S n (x, h)= K n (h)V nn
                                         j=1
          Hence,
          	         
                   n          j−1
           h + n − 1  S n (x, h)    n+1     V nj (−x)
                              =(−1)
               h      S n (0,h)            h + n + j − 1
                                        j=1

                                 n                                   j−1
                                           1          (h + n + j − 2)!x
                              =
                                   (n − j)!(h + j − 1)!     (j − 1)!
                                j=1
                                            n
                                     1          h + n − 1  
  h+n−1  h+n+j−2
                              =                           D      (x        ),
                                (h + n − 1)!    h + j − 1
                                           j=1
                                                                  
                    2
                                              n
          (h + n − 1)! S n (x, h)  h+n−1  n−1     h + n − 1  
  h+j−1
                              = D       x                   x     
           h!(n − 1)!  S n (0,h)                  h + j − 1
                                             j=1

                                             h+n−1
                                                    h + n − 1
                                  h+n−1
                                          n−1
                              = D       x                      x r
                                                        r
                                              r=h

                              = D h+n−1    x n−1 (1 + x) h+n−1  − p h+n−2 (x) ,
          where p r (x) is a polynomial of degree r. Formula (a) follows. To prove (b),
          put x = −1 − t. The details are elementary.
            Further formulas of the Rodrigues type appear in Section 4.11.4.
          4.10.3  Bordered Yamazaki–Hori Determinants — 1
          Let
                         A = |a ij | n = |θ m | n ,
                         B = |b ij | n = |φ m | n ,  0 ≤ m ≤ 2n − 1,  (4.10.22)
          denote two Hankelians, where
                                1      2 2(i+j−1)  2 2(i+j−1)
                       a ij =        p x       + q y       − 1 ,
                             i + j − 1
                               1     2 2m+2   2 2m+2
                       θ m =       p x     + q y    − 1 ,
                             m +1
                                1      2  i+j−1  2  i+j−1
                        b ij =       p X      + q Y      ,
                             i + j − 1
                               1     2  m+1   2  m+1
                       φ m =       p X     + q Y    ,
                             m +1
                         2
                     2
                    p + q =1,
                              2
                        X = x − 1,
                              2
                        Y = y − 1.                                 (4.10.23)
   139   140   141   142   143   144   145   146   147   148   149