Page 150 - Determinants and Their Applications in Mathematical Physics
P. 150

4.10 Henkelians 3  135

          Now, perform the row and column operations
                      i−2
                                i − 2

                 R =     (−1) r       R i−r ,  i = n, n − 1,n − 2,..., 3,
                                 r
                  i
                      r=0
                      j−1
                                j − 1

                 C =     (−1) r       C j−r ,  j = n − 1,n − 2,..., 2.

                                 r
                  j
                      r=0
          The result is
                                 2        3           n−1

                        ∆φ 0   ∆ φ 0    ∆ φ 0   ···  ∆   φ 0     1
                         2       3        4
                                                       n
                        ∆ φ 0  ∆ φ 0    ∆ φ 0   ···  ∆ φ 0     ∆α 0
                         3       4        5           n+1       2
                     n
            Y =(−1)   ∆ φ 0    ∆ φ 0    ∆ φ 0   ···  ∆   φ 0   ∆ α 0   ,

                        ...................................................
                         n    ∆ n+1    ∆ n+2    ··· ∆ 2n−2    ∆ n−1
                       ∆ φ 0       φ 0      φ 0          φ 0      α 0 n
          where
                                           φ m+1
                                            0
                                   ∆ φ 0 =       .
                                    m
                                           m +1
          Transfer the last column to the first position, which introduces the sign
          (−1) n+1 , and then remove powers of φ 0 from all rows and columns except
          the first column, which becomes
                                      2       n−1     T

                                ∆α 0 ∆ α 0   ∆    α 0
                              1        2  ···  n−1     .
                                φ 0   φ 0     φ 0
          The other (n − 1) columns are identical with the corresponding columns of
          the Hilbert determinant K n . Hence, expanding the determinant by elements
          from the first column,
                                       n
                                 n(n−1)      (n)  i−1
                          Y = −φ 0        K i1  ∆  α 0 φ n−i .
                                                       0
                                      i=1
          The proof is completed with the aid of (4.10.5) and (4.10.8) and the formula
          for ∆ i−1 α 0 in Appendix A.8.
            Further notes on the Yamazaki–Hori determinant appear in Section 5.8
          on algebraic computing.
          4.10.4  A Particular Case of the Yamazaki–Hori Determinant
          Let
                            A n = |φ m | n ,  0 ≤ m ≤ 2n − 2,

          where
                                        x 2m+2  − 1
                                  φ m =          .                 (4.10.29)
                                          m +1
   145   146   147   148   149   150   151   152   153   154   155