Page 154 - Determinants and Their Applications in Mathematical Physics
P. 154

4.11 Hankelians 4  139

                                              2(i+j−1)
                                            x
                             Q n = Q n (x)=           .            (4.11.12)
                                            i + j − 1
                                                     n
          Both K n and Q n are Hankelians and Q n (1) = K n , the simple Hilbert
          matrix.
                                               2j−1
                                            v ni x
                              S n = S n (x)=          ,            (4.11.13)
                                            i + j − 1
                                                    n
          where the v ni are v-numbers.
                             H n = H n (x, t)= S n (x)+ tI n
                                                (n)
                                          = h      ,
                                               ij
                                                  n
          where
                                  v ni x 2j−1
                             (n)
                            h   =          + δ ij t,
                                  i + j − 1
                             ij
                             H n = H n (x, −t)= S n (x) − tI n
                                    (n)
                                = h     ,                          (4.11.14)
                                    ij
                                       n
          where
                               (n)        (n)
                              h  (x, t)= h  (x, −t),
                               ij         ij
                              ¯
                             H n (x, −t)=(−1) H n (−x, t).         (4.11.15)
                                            n
          Theorem 4.43.
                                              2
                                    K −1 Q n = S .
                                      n       n
          Proof. Referring to (4.11.7) and applying the formula for the product
          of two matrices,
                                              2(i+j−1)
                                             x
                        −1
                      K   Q n =   v ni v nj
                                 i + j − 1   i + j − 1
                        n
                                          n           n

                                             x
                                  n           2(k+j−1)

                              =      v ni v nk
                                    i + k − 1 k + j − 1
                                 k=1
                                                      n

                                  n 	     2k−1  
	   2j−1
                                      v ni x     v nk x
                              =
                                      i + k − 1  k + j − 1
                                 k=1
                                                            n
                                 2
                              = S .
                                 n
          Theorem 4.44.
                                   B n = K n H n H n ,
          where the symbols can be interpreted as matrices or determinants.
          Proof. Applying Theorem 4.43,
                                        2
                             B n = Q n − t K n
   149   150   151   152   153   154   155   156   157   158   159