Page 155 - Determinants and Their Applications in Mathematical Physics
P. 155

140   4. Particular Determinants

                                        −1      2
                                = K n K
                                        n  Q n − t I n
                                       2   2

                                = K n S − t I n
                                       n
                                = K n (S n + tI n )(S n − tI n )
                                = K n H n H n .
          Corollary.
                               B −1  = H −1 H −1 K −1 ,
                                n      n   n   n
                                (n)        (n)     (n)     (n)
                              B    = H      H    K    .
                               ji       ji   ji    ji
          Lemma.
                                  n
                                     (n)   2j−1
                                    h   = x     + t.
                                     ij
                                 i=1
            The proof applies (4.11.3) and is elementary.
            Let E n+1 denote the determinant of order (n + 1) obtained by bordering
          H n as follows:
                                                   v n1 /n
                             h 11  h 12  ···  h 1n

                             h 21  h 22  ···  h 2n  v n2 /(n +1)

                    E n+1 =   ..................................

                             h n1  h n2  ··· h nn  v nn /(2n − 1)
                             1    1   ···   1        •

                                                            n+1
                              n   n

                         = −         v nr H rs  .                  (4.11.16)
                                    n + r − 1
                             r=1 s=1
          Theorem 4.45.
                                 E n+1 =(−1) H n−1 .
                                            n
            The proof consists of a sequence of row and column operations.
          Proof. Perform the column operation

                                C = C n − x 2n−1  C n+1            (4.11.17)
                                 n
          and apply (6b) with j = n. The result is

                       h 11  h 12  ···  h 1,n−1  •  v n1 /n

                       h 21  h 22  ···  h 2,n−1  •  v n2 /(n +1)
                                                              .    (4.11.18)

             E n+1 =   ........................................

                       h n1  h n2  ··· h n,n−1  t  v nn /(2n − 1)
                       1    1   ···   1     1       •

                                                           n+1
          Remove the element in position (n, n) by performing the row operation
                                  R = R n − tR n+1 .               (4.11.19)

                                   n
   150   151   152   153   154   155   156   157   158   159   160