Page 152 - Determinants and Their Applications in Mathematical Physics
P. 152

4.11 Hankelians 4  137

                                          1
                                             3
                                                 3
             in which the column difference is (v − u ).
                                          3
             Let the determinant of the elements in the first n rows and the first n
             columns of the matrix be denoted by A n . Prove that
                                     K n n! 3    n(n+1)
                                A n =      (u − v)    .
                                      (2n)!
          2. Define a Hankelian B n as follows:


                        B n =      φ m         ,  0 ≤ m ≤ 2n − 2,
                               (m + 1)(m +2)
                                            n
             where
                                     m

                                                      v .
                               φ m =   (m +1 − r)u m−r r
                                    r=0
             Prove that
                                           A n+1
                                   B n =           ,
                                         n!(u − v) 2n
             where A n is defined in Exercise 1.



          4.11 Hankelians 4


          Throughout this section, K n = K n (0), the simple Hilbert determinant.


          4.11.1  v-Numbers

          The integers v ni defined by
                                 (−1) n+i (n + i − 1)!
                   v ni = V ni (0) =                                (4.11.1)
                                         2
                                  (i − 1)! (n − i)!

                                  n − 1    n + i − 1
                      =(−1)  n+i i                   ,  1 ≤ i ≤ n,  (4.11.2)
                                   i − 1    n − 1
          are of particular interest and will be referred to as v-numbers.
            A few values of the v-numbers v ni are given in the following table:

                            i
                                 1     2      3      4    5
                         n
                         1       1
                         2     −2      6
                         3       3   −24     30
                         4     −4     60  −180     140
                         5       5  −120    630  −1120   630
   147   148   149   150   151   152   153   154   155   156   157