Page 157 - Determinants and Their Applications in Mathematical Physics
P. 157

142   4. Particular Determinants

          Theorem 4.45 now follows from (4.11.24).
          Theorem 4.46.
                             G n =(−1) n−1 v nn K n H n H n−1 ,
          where G n is defined in (4.11.10).

          Proof. Perform the row operation
                                          n

                                    R =

                                      i      R k
                                         k=1
          on H n and refer to the lemma. Row i becomes
                                 3      5          2n−1
                        (x + t), (x + t), (x + t),..., (x  + t) .
          Hence,
                                n
                                   2j−1      (n)
                         H n =   (x     + t)H  ,  1 ≤ i ≤ n.       (4.11.26)
                                             ij
                               j=1
          It follows from the corollary to Theorem 4.44 that
                                        n  n
                           (n)    (n)          (n)  (n)  (n)
                         B    = B    =       H    H   K   .        (4.11.27)
                                               jr  rs
                           ij     ji                   si
                                       r=1 s=1
          Hence, applying (4.11.7),
                                                  (n)  (n)
                                          v ns H rs H
                                       n
                                           n
                            (n)
                          B                           jr  .        (4.11.28)
                                               i + s − 1
                            ij  = K n v ni
                                       r=1 s=1
          Put i = n, substitute the result into (4.11.10), and apply (4.11.16) and
          (4.11.24):
                                            (n)
                                 n  n           n
                                       v ns H rs     2j−1    (n)
                                                  (x    + t)H
                                       n + s − 1             jr
                    G n = K n v nn
                                r=1 s=1        j=1
                                               (n)
                                   n   n
                                          v ns H rs
                                         n + s − 1
                       = K n v nn H n
                                   r=1 s=1
                       = −K n v nn H n E n+1 .                     (4.11.29)
          The theorem follows from Theorem 4.45.
          4.11.3 Some Determinants with Binomial and Factorial
                  Elements
          Theorem 4.47.

               n + j − 2
                                 n(n−1)/2
          a.                =(−1)       ,
                 n − i

                         n
   152   153   154   155   156   157   158   159   160   161   162