Page 162 - Determinants and Their Applications in Mathematical Physics
P. 162

4.11 Hankelians 4  147

          Proof. By interchanging first rows and then columns in a suitable
          manner it is easy to show that

                            ν 0  ν 1  ν 2  ···

                            ν 1  ν 2  ν 3  ···

                            ν 2  ν 3  ν 4  ···
                     E n =   ...............           .           (4.11.53)



                                           ν 1  ν 2
                                                  ···

                                           ν 2  ν 3
                                                  ···
                                         .............

                                                      n
          Hence, referring to Theorems 4.11.5 and 4.11.6b,
                                               (n+1)
                                E 2n =(−1) A n A
                                          n
                                               n+1,1
                                                   2
                                          n −(2n−1)
                                    =(−1) 2        ,
                                                 (n+1)
                              E 2n+1 =(−1) A n+1 A n+1,1
                                          n
                                               2
                                    =(−1) 2     .                  (4.11.54)
                                          n −4n
          These two results can be combined into one as shown in the theorem which
          is applied in Section 4.12.1 to evaluate |P m (x)| n .
          Exercise. If


                                  2m
                          B n =          ,  0 ≤ m ≤ 2n − 2,
                                  m
                                       n
          prove that
                              B n =2 n−1 ,
                              (n)   2[n(n−1)−(i+j−2)]  (n)
                             B   =2               A   ,
                              ij                    ij
                              (n)   n−1
                             B n1  =2  .
          4.11.4  A Nonlinear Differential Equation
          Let
                                 G n (x, h, k)= |g ij | n ,
          where
                                       h+i+k−1

                                             ,j = k
                                      x
                               g ij =  h+i+k−1                     (4.11.55)
                                         1
                                      h+i+j−1 ,  j  = k.
          Every column in G n except column k is identical with the corresponding
          column in the generalized Hilbert determinant K n (h). Also, let
                                         n

                              G n (x, h)=   G n (x, h, k).         (4.11.56)
                                        k=1
   157   158   159   160   161   162   163   164   165   166   167