Page 163 - Determinants and Their Applications in Mathematical Physics
P. 163

148   4. Particular Determinants

          Theorem 4.52.
                                                2


                              (xG ) = K n (h)x P (x, h),
                                             h
                                 n             n
          where
                                     D h+n [x (1 + x) h+n−1 ]
                                           n
                           P n (x, h)=                   .
                                         (h + n − 1)!
          Proof. Referring to (4.10.8),
                                    K    (n) h+i+j−1
                                           x
                                 n
                                     n
                        G n (x)=         ij
                                        h + i + j − 1
                                i=1 j=1
                                       n  n         h+i+j−1
                                             V ni V nj x
                              = K n (h)                    .       (4.11.57)
                                             (h + i + j − 1) 2
                                      i=1 j=1
          Hence,
                                          n  n
                                                       i+j−2
                        (xG ) = K n (h)x h      V ni V nj x


                            n
                                         i=1 j=1
                                          2
                               = K n (h)x P (x, h),                (4.11.58)
                                        h
                                          n
          where
                                  n
                                               i−1
                        P n (x, h)=  (−1) n+i V ni x
                                  i=1
                                  n                   i−1
                                        (h + n + i − 1)!x
                               =
                                     (i − 1)! (n − i)! (h + i − 1)!
                                  i=1
                                  n          h+n+i−1
                                      D h+n (x      )
                               =                      ,            (4.11.59)
                                     (n − i)! (h + i − 1)!
                                  i−1
                                      n
                                          h + n − 1        h+n+i−1
                 (h + n − 1)! P n (x, h)=           D  h+n (x     )
                                          h + i − 1
                                     i=1

                                     n
                                         h + n − 1   h+i−1
                         = D h+n  x n               x
                                          h + i − 1
                                    i=1

                                    h+n−1
                                            h + n − 1
                         = D h+n  x n                 x r
                                               r
                                     r=h
                                         h+n−1
                         = D h+n  x (1 + x)    − p h+n−1 (x) ,     (4.11.60)
                                  n
          where p r (x) is a polynomial of degree r. The theorem follows.
            Let
                                  E(x)= |e ij (x)| n−1 ,
   158   159   160   161   162   163   164   165   166   167   168