Page 165 - Determinants and Their Applications in Mathematical Physics
P. 165

150   4. Particular Determinants

          Note that U ij  = V ij in general. Since
                                   ψ    = −mψ m−1 ,
                                    m
                                   ψ 0 = x + c,                    (4.11.68)
          it follows that


                        V = V 11

                               c(1 + x) i+j+1  +(1 − c)x  i+j+1
                          =                                 .      (4.11.69)
                                       i + j +1
                                                        n−1
          Expand U and V as a polynomial in c:
                                             n

                           U(x, c)= V (x, c)=   f r (x)c n−r .     (4.11.70)
                                            r=0
          However, since
                                   ψ m = y m c + z m ,
          where z m is independent of c,

                                             m+1    m+1
                                      (1 + x)    − x
                          y m =(−1) m                    ,         (4.11.71)
                                            m +1
                          y     = −my m−1 ,
                           m
                           y 0 =1,                                 (4.11.72)
          it follows from the first line of (4.11.67) that f 0 , the coefficient of c in V ,
                                                                    n
          is given by

                                    f 0 = |y m | n
                                      = constant.                  (4.11.73)

                                                  n−1

                         n−1
                                 −1
                                         −1
                        c   V (x, c  )= f 0 c  + f 1 +  f r+1 c ,
                                                          r
                                                  r=1
          where
                                                  ∂
                        n−1
                                   −1



                 f = c     D x V (x, c  )  c=0 ,  D x =  ∂x  ,
                  1
                         n−1     −1
                    = c    V 11 (x, c  )
                                     c=0

                              −1     i+j+1       −1
                             c  (1 + x)   +(1 − c   )x  i+j+1
                    = c  n−1
                                       i + j +1

                                                           n−1
                                                               c=0
                    = E.                                           (4.11.74)
          Furthermore,
                                                             ∂
                                                −1
                               −1
                    D c {c U(x, c  )} = D c {c V (x, c  )},  D c =  ,
                                          n
                         n
                                                            ∂c
   160   161   162   163   164   165   166   167   168   169   170