Page 164 - Determinants and Their Applications in Mathematical Physics
P. 164

4.11 Hankelians 4  149

          where
                                    (1 + x) i+j+1  − x i+j+1
                            e ij (x)=                  .           (4.11.61)
                                          i + j +1
          Theorem 4.53. The polynomial determinant E satisfies the nonlinear
          differential equation
                                       2   2

                         {x(1 + x)E}   =4n (xE) {(1 + x)E} .
          Proof. Let

                        A(x, ξ)= |φ m (x, ξ)| n ,  0 ≤ m ≤ 2n − 2,
          where
                        1         m+1          m+1          m+1
            φ m (x, ξ)=     (ξ + x)   − c(ξ − 1)   +(c − 1)ξ    .  (4.11.62)
                      m +1
          Then,
                              ∂
                                φ m (x, ξ)= mφ m−1 (x, ξ),
                              ∂ξ
                                 φ 0 (x, ξ)= x + c.                (4.11.63)
          Hence, from Theorem 4.33 in Section 4.9.1, A is independent of ξ. Put
          ξ = 0 and −x in turn and denote the resulting determinants by U and V ,
          respectively. Then,

                                     A = U = V,                    (4.11.64)
          where


                     U(x, c)= |φ m (x, 0)| n

                                x m+1  +(−1) c
                                          m
                           =                   ,  0 ≤ m ≤ 2n − 2
                                   m +1

                                             n
                                             c
                                x    +(−1)  i+j
                                 i+j−1
                           =                      .                (4.11.65)
                                   i + j − 1
                                               n
          Put
                       ψ m (x)= φ m (x, −x)
                               (−1) m        m+1          m+1
                             =       [c(1 + x)   +(1 − c)x   ]     (4.11.66)
                               m +1
                      V (x, c)= |ψ m (x)| n ,
                                       m+1
                                 c(1 + x)  +(1 − c)x  m+1
                             =
                                         m +1
                                                        n
                                       i+j−1
                                 c(1 + x)   +(1 − c)x  i+j−1
                             =                               .     (4.11.67)
                                         i + j − 1
                                                          n
   159   160   161   162   163   164   165   166   167   168   169