Page 161 - Determinants and Their Applications in Mathematical Physics
P. 161

146   4. Particular Determinants

          Proof. Apply the Jacobi identity (Section 3.6.1) to A r , where r ≥ i +1:
                                     (r)
                                    A    A  (r)     (r)

                                     ij   ir     = A r A  ,
                                     (r)  (r)       ir,jr
                                   A

                                     rj  A rr
                                                    (r−1)
                                              = A r A   ,
                                                    ij
                                 (r)     (r−1)    (r)  (r)
                           A r−1 A  − A r A   = A   A  .           (4.11.47)
                                 ij      ij       ir  jr
          Scale the cofactors and refer to Theorems 4.48 and 4.49a:

                            A − A  ij  =  A r  A ri  A rj
                             ij
                                   r−1
                             r                 r   r
                                        A r−1
                                      =2 −(4r−5) A A rj
                                                 ri
                                                 r  r
                                      =2λ r−1,i−1 λ r−1,j−1 .      (4.11.48)
          Hence,
                        n                     n



                     2     λ r−1,i−1 λ r−1,j−1 =  A − A  ij
                                                   ij
                                                         r−1
                                                   r
                      r=i+1                 r=i+1
                                          = A − A  ij
                                              ij
                                              n
                                                   i
                                          = A − 2  2(i−1) λ i−1,j−1 ,  (4.11.49)
                                              ij
                                              n
          which yields a formula for the scaled cofactor A . The stated formula for
                                                    ij
                                                    n
                            (n)
          the simple cofactor A  follows from Theorem 4.49a.
                            ij
            Let
                           E n = |P m (0)| n ,  0 ≤ m ≤ 2n − 2,    (4.11.50)
          where P m (x) is the Legendre polynomial [Appendix A.5]. Then,
                                  P 2m+1 (0)=0,
                                    P 2m (0) = ν m .               (4.11.51)
          Hence,

                                  ν 0  •  ν 1  •  ν 2  ···

                                  •  ν 1  •  ν 2  •  ···

                                  ν 1  •  ν 2  •  ν 3  ···
                                                         .         (4.11.52)
                          E n =
                                  •  ν 2  •  ν 3  •  ···

                                  ν 2  •  ν 3  •  ν 4  ···
                                 ........................

                                                       n
          Theorem 4.51.
                                                          2
                                            n(n−1)/2 −(n−1)
                         E n = |P m (0)| n =(−1)   2       .
   156   157   158   159   160   161   162   163   164   165   166