Page 166 - Determinants and Their Applications in Mathematical Physics
P. 166

4.11 Hankelians 4  151

                                         n

                                            f r c r
                                   = D c
                                        r=0
                                           n
                                                 r−1
                                   = f 1 +   rf r c  .             (4.11.75)
                                          r=2
          Hence,
                                        −1
                        f 1 = D c {c U(x, c  )}
                                  n
                                             c=0
                                      i+j−1
                                     x    − (−1)  i+j −1
                                                   c
                          = D c c  n
                                         i + j − 1
                                                      n c=0

                                  cx    − (−1)  i+j
                                   i+j−1

                                      i + j − 1
                          = D c
                                                  n c=0
                              n

                          =     G n (x, 0,k)
                             k=1
                          = G n (x, 0),                            (4.11.76)
          where G n (x, h, k) and G n (x, h) are defined in the first line of (4.11.55) and
          (4.11.56), respectively.

                                       E = G ,


                                   (xE) =(xG )
                                               2
                                         = K n P ,                 (4.11.77)
                                               n
          where
                               K n = K n (0),
                               P n = P n (x, 0)
                                     D [x (1 + x) n−1 ]
                                         n
                                      n
                                  =                 .              (4.11.78)
                                         (n − 1)!
          Let
                                    D [x n−1 (1 + x) ]
                                      n
                                                  n
                               Q n =                .              (4.11.79)
                                         (n − 1)!
          Then,
                               P n (−1 − x)=(−1) Q n .
                                                n
          Since
                                  E(−1 − x)= E(x),
          it follows that
                                                  2
                                 {(1 + x)E} = K n Q ,

                                                  n
                                                       2


                           {xE} {(1 + x)E} =(K n P n Q n ) .       (4.11.80)
   161   162   163   164   165   166   167   168   169   170   171