Page 159 - Determinants and Their Applications in Mathematical Physics
P. 159

144   4. Particular Determinants


                                                   n + j − 2
                                              =
                                                     n − i
                                                             n
                                              = A n ,
          which proves (b).

          Exercises

          Apply similar methods to prove that

               n + j − 1
                                 n(n−1)/2
          1.                =(−1)       ,
                 n − i

                         n
                  1           (−1)
                                  n(n−1)/2
                                         K n
          2.              =                  .
             (i + j − 1)!   [1!2!3! ··· (n − 1)!]
                                            2
                        n
            Define the number ν i as follows:
                                             ∞

                                (1 + z) −1/2  =  ν i z .           (4.11.35)
                                                  i
                                             i=0
          Then

                                      (−1) i  2i
                                  ν i =          .                 (4.11.36)
                                        2 2i  i
          Let
                            A n = |ν m | n ,  0 ≤ m ≤ 2n − 2,

                                                                   (4.11.37)

                               = C 1 C 2 ··· C n−1 C n
                                                    n
          where

                                                       T
                           C j = ν j−1 ν j ...ν n+j−3 ν n+j−2  .   (4.11.38)
                                                       n
          Theorem 4.48.
                                 A n =2 −(n−1)(2n−1) .
          Proof. Let
                                      n   	  n + r
                               λ nr =             2 .              (4.11.39)
                                                   2r
                                    n + r    2r
          Then, it is shown in Appendix A.10 that
                     n
                                         δ in
                       λ n−1,j−1 ν i+j−2 =   ,  1 ≤ i ≤ n,         (4.11.40)
                                       2 2(n−1)
                    j=1

                     A n =2  −(2n−3)   C 1 C 2 ··· C n−1 (λ n−1,n−1 C n ) ,

                                                             n

                        =2  −(2n−3)   C 1 C 2 ··· C n−1 C       ,  (4.11.41)
                                                  n n
   154   155   156   157   158   159   160   161   162   163   164