Page 160 - Determinants and Their Applications in Mathematical Physics
P. 160

4.11 Hankelians 4  145

          where
                                        n−1

                     C = λ n−1,n−1 C n +

                       n                   λ n−1,j−1 C j
                                        j=1
                           n−1

                                                               T
                         =    λ n−1,j−1 ν j−1 ν j ··· ν n+j−3 ν n+j−2
                                                             n
                           j=1
                         =2 −(4n−5)   00 ··· 01   T .              (4.11.42)
                                            n
          Hence,
                       A n =2 −4(n−1)+1  A n−1
                     A n−1 =2 −4(n−2)+1  A n−2                     (4.11.43)
                     .......................................
                       A 2 =2 −4(1)+1 A 1 ,  (A 1 = ν 0 =1).
          The theorem follows by equating the product of the left-hand sides to the
          product of the right-hand sides.
            It is now required to evaluate the cofactors of A n .
          Theorem 4.49.
              (n)   −(n−1)(2n−3)
          a. A   =2            λ n−1,j−1 ,
              nj
              (n)   −(n−1)(2n−3)
          b. A   =2            ,
              n1
          c. A nj  =2 2(n−1) λ n−1,j−1 .
              n
          Proof. The n equations in (4.11.40) can be expressed in matrix form as
          follows:
                                    A n L n = C ,                  (4.11.44)

                                              n
          where

                                                       T
                           L n = λ n0 λ n1 ··· λ n,n−2 λ n,n−1  .  (4.11.45)
                                                       n
          Hence,
                   L n = A −1 C
                          n   n
                      = A −1   A (n)     C
                          n   ji    n
                                 n
                      =2 (n−1)(2n−1)−2(n−1)                     T  , (4.11.46)
                                          A n1 A n2 ··· A n,n−1 A nn
                                                               n
          which yields part (a) of the theorem. Parts (b) and (c) then follow
          easily.
          Theorem 4.50.
                                         n−1

           (n)   −n(2n−3)  2i−3
          A   =2          2   λ i−1,j−1 +    λ r−1,i−1 λ r−1,j−1 ,  j ≤ i<n−1.
           ij
                                        r=i+1
   155   156   157   158   159   160   161   162   163   164   165