Page 158 - Determinants and Their Applications in Mathematical Physics
P. 158

4.11 Hankelians 4  143

                  1        (−1)       1! 2! 3! ··· (n − 2)!
                               n(n−1)/2

          b.              =                          .
               (i + j − 2)!     n!(n + 1)! ··· (2n − 2)!
          The second determinant is Hankelian.
          Proof. Denote the first determinant by A n . Every element in the last
          row of A n is equal to 1. Perform the column operations


                  C = C j − C j−1 ,  j = n, n − 1,n − 2,..., 2,    (4.11.30)
                    j
          which remove all the elements in the last row except the one in position
          (n, 1). After applying the binomial identity

                              n      n − 1      n − 1
                                  −         =          ,
                              r        r        r − 1
          the result is


                                           n + j − 2
                           A n =(−1)  n+1               .          (4.11.31)
                                           n − i − 1
                                                     n−1
          Once again, every element in the last row is equal to 1. Repeat the column
          operations with j = n − 1,n − 2,..., 2 and apply the binomial identity
          again. The result is


                                        n + j − 2
                              A n = −                .             (4.11.32)
                                        n − i − 2
                                                  n−2
          Continuing in this way,

                                        n + j − 2

                              A n =+
                                        n − i − 4

                                                  n−4


                                        n + j − 2
                                 = −
                                        n − i − 6
                                                  n−6

                                        n + j − 2

                                 =+
                                        n − i − 8

                                                  n−8

                                        n + j − 2

                                 = ±
                                          2 − i

                                                  2
                                 = ±1,                             (4.11.33)

                                1  when n =4m, 4m +1
                  sign(A n )=                                      (4.11.34)
                              −1   when n =4m − 2, 4m − 1,
          which proves (a).
            Denote the second determinant by B n . Divide R i by (n−i)!, 1 ≤ i ≤ n−1,
          and multiply C j by (n + j − 2)!, 1 ≤ j ≤ n. The result is

                (n − 1)! n!(n + 1)! ··· (2n − 2)!     (n + j − 2)!
                                           B n =
                 (n − 1)! (n − 2)! (n − 3)! ··· 1!    (n − i)! (i + j − 2)!
                                                                  n
   153   154   155   156   157   158   159   160   161   162   163