Page 192 - Determinants and Their Applications in Mathematical Physics
P. 192

5.1 Determinants Which Represent Particular Polynomials  177
                       2x  2

                       1  2x  4

                          1   2x   6


                              1   2x   8                   .

          2. H n (x)=

                                  ··· ··· ··· ···

                                               2x

                                                   2n − 2
                                                1    2x

                                                          n
                         x  1

                         1  3x  2

                            2  5x   3


          3. P n (x)=  1        3  7x   4
                    n!
                                   ··· ··· ···     ···

                                                (2n − 3)x   n − 1


                                                  n − 1   (2n − 1)x

                                                                    n
                                                         (Muir and Metzler).
                      1
          4. P n (x)=
                    2 n!
                     n
               2nx      2n

               1 − x 2  (2n − 2)x  4n − 2

                      1 − x    (2n − 4)x   6n − 6
                           2

                                 1 − x    (2n − 6)x                        .
                                     2


                                             ···    ···   ···

                                                          4x
                                                                 2
                                                                n + n − 2
                                                        1 − x      2x
                                                             2
                                                                          n
          5. Let

                             A n = |a ij | n = C 1 C 2 C 3 ··· C n ,


             where
                         a ij = u (j−1)

                              
                                  j − 1
                                       v (j−i+1) , 2 ≤ i ≤ j +1,
                            =     i − 2
                                0,                otherwise,
                              
             and let

                                ∗                      T
                                                        .
                              C = O 2 a 2j a 3j ··· a n−1,j
                                j
             Prove that

                                            ∗
                                     C + C = C j+1 ,
                                       j    j
                                        (n+1)
                                  A + A      =0

                                   n
                                        n+1,n
             and hence prove that
                                                    u
                                                   1 2
                                               n−1
                                            v D
                               A n =(−1) n+1 n         .
                                                    v
   187   188   189   190   191   192   193   194   195   196   197