Page 192 - Determinants and Their Applications in Mathematical Physics
P. 192
5.1 Determinants Which Represent Particular Polynomials 177
2x 2
1 2x 4
1 2x 6
1 2x 8 .
2. H n (x)=
··· ··· ··· ···
2x
2n − 2
1 2x
n
x 1
1 3x 2
2 5x 3
3. P n (x)= 1 3 7x 4
n!
··· ··· ··· ···
(2n − 3)x n − 1
n − 1 (2n − 1)x
n
(Muir and Metzler).
1
4. P n (x)=
2 n!
n
2nx 2n
1 − x 2 (2n − 2)x 4n − 2
1 − x (2n − 4)x 6n − 6
2
1 − x (2n − 6)x .
2
··· ··· ···
4x
2
n + n − 2
1 − x 2x
2
n
5. Let
A n = |a ij | n = C 1 C 2 C 3 ··· C n ,
where
a ij = u (j−1)
j − 1
v (j−i+1) , 2 ≤ i ≤ j +1,
= i − 2
0, otherwise,
and let
∗ T
.
C = O 2 a 2j a 3j ··· a n−1,j
j
Prove that
∗
C + C = C j+1 ,
j j
(n+1)
A + A =0
n
n+1,n
and hence prove that
u
1 2
n−1
v D
A n =(−1) n+1 n .
v