Page 196 - Determinants and Their Applications in Mathematical Physics
P. 196

5.2 The Generalized Cusick Identities  181

                                s 2 = a i+1,j + φ i ψ j ,
                                s 3 = a i+1,j+1 .
          The lemma follows.

            Let
                                          ∗
                                   A ∗  = |a | 2n ,
                                    2n    ij
                                              1/2
                                     ∗


                                   Pf = A  ∗     .                  (5.2.15)
                                     n     2n
          Lemma 5.3.
                           2n−1
                                   i+1  (n) 2n−i−1
                               (−1)  Pf   x      =Pf  ∗ n−1 .
                                       i
                           i=1
          Proof. Denote the sum by F n . Then, referring to (5.2.13) and Section 3.7
          on bordered determinants,
                       2n−1 2n−1
                   2
                                              x
                 F =           (−1) i+j Pf (n) Pf (n) 4n−i−j−2
                   n                   i    j
                       i=1  j=1
                       2n−1 2n−1
                                (2n−1) 4n−i−j−2
                     =         A      x
                                ij
                       i=1  j=1
                                                          x 2n−2
                           a 11    a 12   ···   a 1,2n−1

                                                          x 2n−3
                           a 21    a 22   ···   a 2,2n−1

                                                                  . (5.2.16)

                     = −   .........................................
                                                            1
                          a 2n−1,1  a 2n−1,2  ··· a 2n−1,2n−1
                          x       x       ···     1         •
                           2n−2    2n−3
                                                                2n
          (It is not necessary to put a ii = 0, etc., in order to prove the lemma.)
            Eliminate the x’s from the last column and row by means of the row and
          column operations

                          R = R i − xR i+1 ,  1 ≤ i ≤ 2n − 2,
                            i

                          C = C j − xC j+1 ,  1 ≤ j ≤ 2n − 2.       (5.2.17)
                            j
          The result is
                              a       a     ···   a
                               ∗       ∗           ∗
                               11      12          1,2n−1   •
                              a       a     ···   a
                               ∗       ∗           ∗
                               21      22          2,2n−1   •
                     2
                    F = −   .....................................
                     n
                             a ∗ 2n−1,1  a ∗ 2n−1,2  ··· a ∗ 2n−1,2n−1  1


                              •        •    ···      1      •
                                                              2n
                            ∗
                       =+|a | 2n−2
                            ij
                       = A ∗  .
                          2n−2
          The lemma follows by taking the square root of each side.
   191   192   193   194   195   196   197   198   199   200   201