Page 198 - Determinants and Their Applications in Mathematical Physics
P. 198

5.2 The Generalized Cusick Identities  183
                                   n n+j−1
                                             (n)  (n)   2n−i−1
                                =          H   K       x
                                             jn  i−j+1,n
                                   j=1  i=j
                                   2n−1        n
                                        2n−i−1     (n)  (n)
                                =      x         H   K       .       (5.2.20)
                                                   jn  i−j+1,n
                                   i=1        j=1
          Note that the changes in the limits of the i-sum have introduced only zero
          terms. The lemma follows by equating coefficients of x 2n−i−1 .


          5.2.3  Proof of the Principal Theorem
          A double-sum identity containing the symbols c ij , f i , and g i is given in
          Appendix A.3. It follows from Lemma 5.5 that the conditions defining the
          validity of the double-sum identity are satisfied if

                                  f i =(−1) i+1 Pf (n) ,
                                               i
                                        (n)  (n)
                                 c ij = H  K   ,
                                        in  jn
                                  g i = a i,2n .
          Hence,
             2n−1                  n   n
                     i+1  (n)              (n)  (n)
                (−1)   Pf   a i,2n =     H   K
                         i                 in  jn  a i+j−1,2n
             i=1                  i=1 j=1
                                                  2n−i−j+1
                                   n   n
                                           (n)  (n)
                                =        H   K            φ s+i+j−2 ψ 2n−s .
                                           in  jn
                                  i=1 j=1           s=1
          From (5.2.11), the sum on the left is equal to Pf n . Also, since the interval
          (1, 2n−i−j +1) can be split into the intervals (1,n+1−j) and (n+2−j,
          2n − i − j + 1), it follows from the note in Appendix A.3 on a triple sum
          that
                                              n−1
                                   n
                                       (n)         (n)
                            Pf n =   K   X j +   H    Y i ,
                                       jn          in
                                  j=1         i=1
          where
                        n      n+1−j
                            (n)
                  X j =    H
                            in      φ s+i+j−2 ψ 2n−s
                        i=1     s=1
                       n+1−j
                                   n
                                               (n)
                     =               φ s+i+j−2 H
                             ψ 2n−s
                                               in
                        s=1       i=1
                       n+1−j       n
                                              (n)
                     =               h i,s+j−1 H
                             ψ 2n−s
                                              in
                        s=1       i=1
   193   194   195   196   197   198   199   200   201   202   203