Page 215 - Determinants and Their Applications in Mathematical Physics
P. 215

200   5. Further Determinant Theory
                                     ∂S

                         2
                              2
                      = U − V +         ,                           (5.4.42)
                                   r  ∂x r
          where

                                   S =    c i c j E .               (5.4.43)
                                               ij
                                       i,j
          This function is identical to the left-hand side of (5.4.26). Let

                           T =     (c i + c j )(c r + c s )E E .    (5.4.44)
                                                    is
                                                       rj
                               i,j,r,s
          Then, applying (5.4.6),

                     T =     c i E  is  c r E rj  +  E rj  c i c s E is
                          i,s     j,r        j,r   i,s

                         +     E is  c j c r E rj  +  c j E rj  c s E  is
                            i,s   j,r          j,r     i,s
                                 2
                       =(U + V ) +2S      E  rs  +(U − V ) 2
                                       r,s

                                  2
                             2
                       =2(U + V )+2S        E .                     (5.4.45)
                                             rr
                                          r
          Eliminating V from (5.4.42),

                                                     ∂
                                     2

                         T +2R =4U +2         E  rr  +   S.         (5.4.46)
                                          r         ∂x r
            To obtain a formula for Q, multiply (5.4.11) by (c i + c j ), sum over i and
          j, and apply (5.4.13) with the modifications (i, j) ↔ (r, s) on the left and
          (i, r) → (r, s) on the right:

                Q =      (c i + c j )(c r + c s )E E  rj  − 2  c r (c i + c j )E E  rj
                                         is
                                                               ir
                    i,j,r,s                      i,j,r

                  = T − 2    c r  (c i + c j )E E rj
                                           ir
                           r   i,j

                  = T − 4    c r c s E E .                          (5.4.47)
                                  rs
                                     sr
                          r,s
          Eliminating T from (5.4.46) and applying (5.4.26) and the fourth and sixth
          lines of (5.4.4),

               Q +2R =4      c r c s (E E ss  − E E )
                                   rr
                                               rs
                                            sr
                          r,s


                                       ∂        2      1
                        +2      E  rr  +        c E ss  −   E stu,stu
                                                       3
                                                s
                            r         ∂x r   s           s,t,u
   210   211   212   213   214   215   216   217   218   219   220