Page 211 - Determinants and Their Applications in Mathematical Physics
P. 211

196   5. Further Determinant Theory

                             †     rs       †  2   2  rs
                              c r c s E  = −  (c + c )E
                                               r   s
                          r,s             r,s
                                         1
                                     = −      E  rst,rst ,          (5.4.25)
                                         3
                                          r,s,t
                                                  1
                                           2
                              c r c s E  rs  =  c E  rr  −  E rst,rst ,  (5.4.26)
                                                  3
                                           r
                           r,s          r           r,s,t
                                                   1
                            2   2            2
                          (c + c )E  rs  =2  c E  rr  +  E  rst,rst ,  (5.4.27)
                                                   3
                            r   s            r
                       r,s                r          r,s,t
                                        1
                               † 2
                                c E  rs  =  E  rst,rst  +  c r E  rs,rs ,  (5.4.28)
                                        6
                                r
                            r,s          r,s,t        r,s
                                        1
                               † 2
                                c E  rs  =  E  rst,rst  −  c r E  rs,rs .  (5.4.29)
                                        6
                                s
                            r,s          r,s,t        r,s
          To prove (5.4.20), apply the second equation of (5.4.4) and (5.4.16).
                                   E pr,ps =  ∂E rs  .
                                            ∂x p
          Multiply by (c r − c s ) and sum over r and s:
                                            ∂
                           (c r − c s )E pr,ps =  (c r − c s )E rs
                         r,s              ∂x p  r,s
                                            ∂
                                        =        E rs,rs
                                          ∂x p
                                               r,s

                                        =    E prs,prs ,
                                           r,s
          which is equivalent to (5.4.20). The application of the fifth equation in
          (5.4.4) with the modification (i, p, r, q, s) → (u, r, t, s, t) to (5.4.20) yields
          (5.4.21).
            To prove (5.4.22), sum (5.4.11) over i and j, change the dummy variables
          as indicated
                                    2   2
                                  (c − c )E ij  = F − G
                                    i   j
                                i,j
          where, referring to (5.4.6) and (5.4.7),
                                                         

                  F =     E  is     c r E  rj    +    E rj     c s E  is  
                         i,s      r,j          r,j      i,s
                                                    
                                                    
                     =    E  ii   c r E  rj  +  c s E  is 
                                                    
                        i       r,j         i,s
                               (j→s)       (i→r)
   206   207   208   209   210   211   212   213   214   215   216