Page 209 - Determinants and Their Applications in Mathematical Physics
P. 209

194   5. Further Determinant Theory

          m =1:         ! !  † E E  rj  =(c i − c j )E ,
                                is
                                                ij
                         r  s
          which is equivalent to

                          E E  rj  −  E E  rj  =(c i − c j )E ;     (5.4.10)
                                                        ij
                            is
                                        ir
                     r  s           r
                                                    2
                                                2
          m =2:         ! !  † (c r + c s )E E  rj  =(c − c )E ,
                                       is
                                                       ij
                                                i   j
                         r  s
          which is equivalent to
                                                      2   2
                     (c r + c s )E E rj  − 2  c r E E rj  =(c − c )E ,  (5.4.11)
                                                             ij
                                             ir
                              is
                                                      i   j
                r  s                   r
          etc. Note that the right-hand side of (5.4.9) is zero when j = i for all values
          of m. In particular, (5.4.10) becomes

                                    E E  ri  =  E E  ri             (5.4.12)
                                                  ir
                                      is
                               r  s           r
          and the equation in item m = 2 becomes

                               (c r + c s )E E ri  =2  c r E E .    (5.4.13)
                                        is
                                                       ir
                                                          ri
                          r  s                   r
          5.4.3  First and Second Cofactors
          The following five identities relate the first and second cofactors of E: They
          all remain valid when the parameters are lowered.

                               †  ir,js           ij
                                E    = −(c i − c j )E ,             (5.4.14)
                            r,s
                                           2   2
                        †         ir,js           ij
                         (c r + c s )E  = −(c − c )E ,              (5.4.15)
                                           i   j
                     r,s

                          (c r − c s )E rs  =  E  rs,rs ,           (5.4.16)
                        r,s             r,s

                           2   † c r E rs  = −2  † c s E  rs  =  E rs,rs ,  (5.4.17)
                            r,s            r,s         r,s

                               (c s E  rs  + c r E  sr  + E  rs,rs )=0.  (5.4.18)
                            r<s
          To prove (5.4.14), apply the Jacobi identity to E  ir,js  and refer to (5.4.6)
          and the equation in item m =1.

                                          E  ij  E  is
                            †  ir,js
                             E    =    †
                                         E rj  E
                                                rs
                         r,s         r,s

                                  = E ij   † E rs  −  † E E  rj
                                                       is
                                        r,s       r,s
   204   205   206   207   208   209   210   211   212   213   214