Page 208 - Determinants and Their Applications in Mathematical Physics
P. 208

5.4 The Cofactors of the Matsuno Determinant  193
                                   ∂

                            E +   ∂x i  E  pru,qsv  = e ipru,iqsv ,  (5.4.4)
                              ii
          etc.


          5.4.2 First Cofactors

          When f r + g r = 0, the double-sum identities (C) and (D) in Section 3.4
          become
                              n   n

                                    †            rs                      †
                                     (f r + g s )a rs A  =0,          (C )
                             r=1 s=1
                        n   n

                              †            is  rj          ij            †
                               (f r + g s )a rs A A  =(f i + g j )A .  (D )
                       r=1 s=1
          Applying (C )to E with f r = −g r = c ,
                    †
                                           m
                                           r
                                       c − c m

                              n  n
                                       m

                                    †  r    s    rs
                                                E   =0.              (5.4.5)
                             r=1 s=1   c r − c s
          Putting m =1, 2, 3 yields the following particular cases:
                        ! !
          m =1:              † E  rs  =0,
                         r  s
          which is equivalent to

                                       E rs  =  E ;                  (5.4.6)
                                                  rr
                                 r   s        r
                        ! !
          m =2:              † (c r + c s )E  rs  =0,
                         r  s
          which is equivalent to

                                 (c r + c s )E rs  =2  c r E ;       (5.4.7)
                                                       rr
                            r   s                r
                                          2
                                2
          m =3:         ! !  † (c + c r c s + c )E  rs  =0,
                                r         s
                         r  s
          which is equivalent to
                                2         2            2
                              (c + c r c s + c )E rs  =3  c E .      (5.4.8)
                                                          rr
                                r         s            r
                         r   s                      r
                     †
          Applying (D )to E, again with f r = −g r = c ,
                                                 m
                                                 r

                                m
                                c − c m
                             †  r    s    is  rj   m    m   ij
                                         E E    =(c − c )E .         (5.4.9)
                                                   i    j
                       r   s    c r − c s
          Putting m =1, 2 yields the following particular cases:
   203   204   205   206   207   208   209   210   211   212   213