Page 228 - Determinants and Their Applications in Mathematical Physics
P. 228

5.6 Distinct Matrices with Nondistinct Determinants  213

            Define a Turanian T nr (Section 4.9.2) as follows:

                            φ r−2n+2  ... φ r−n+2

                               .            .

                               .            .     ,  r ≥ 2n − 2,     (5.6.7)

                     T nr =    .            .

                            φ r−n+1        φ r
                                     ...
                                                 n
          which is a subdeterminant of M.
                    .   .    .    .   .   .   .   .    .    .     
                     .   .    .    .   .   .   .   .    .    .
                     .   .    .    .   .   .   .   .    .    .
                ...                                         1   ... 
               
                                                                   
                ...                                    1   4x   ... 
                                                                   
               
                ...                               1   3x   6x 2  ... 
                                                                   
               
                ...                           1  2x 3x  2  4x 3  ... 
               
                                                                   
                ...                       1   x   x 2  x 3  x 4  ... 
               
                                                                   
                ...                   1  φ 0  φ 1  φ 2  φ 3  φ 4  ... 
                                                                   
               
                ...              1    x  φ 1  φ 2  φ 3  φ 4  φ 5  ... 
               
                                                                   
                ...         1    2x  x 2  φ 2  φ 3  φ 4  φ 5  φ 6  ... 
               
                                                                   
                ...     1   3x  3x 2  x 3  φ 3  φ 4  φ 5  φ 6  φ 7  ... 
                                                                   
               
                ... 14x 6x   2  4x 3  x 4  φ 4  φ 5  φ 6  φ 7  φ 8  ... 
               
                                                                   
                     .   .    .    .   .   .   .   .    .    .
                     .   .    .    .   .   .   .   .    .    .
                     .   .    .    .   .   .   .   .    .    .
                                The infinite matrix M
                 . .  . .  . .   . .   . .  . .  . .  . .  . .   . .
                                                                       
                 .   .     .     .     .    .   .    .     .     .
           ...                                                  1    ... 
                                                                        
          
           ...                                            1   −4x    ... 
                                                                        
          
           ...                                      1   −3x    6x 2  ... 
                                                                        
          
           ...                                 1   −2x   3x 2  −4x 3  ... 
          
                                                                        
           ...                            1   −x   x 2  −x 3   x 4   ... 
                                                                        
          
           ...                       1    α 0  α 1  α 2  α 3   α 4   ... 
                                                                        
          
           ...                 1     −x   α 1  α 2  α 3  α 4   α 5   ... 
                                                                        
          
           ...           1    −2x    x 2  α 2  α 3  α 4  α 5   α 6   ... 
                                                                        
          
           ...      1   −3x   3x 2  −x 3  α 3  α 4  α 5  α 6   α 7   ... 
                                                                        
          
           ... 1 −4x    6x 2  −4x 3  x 4  α 4  α 5  α 6  α 7   α 8   ... 
          
                                                                        
                 .   .     .     .     .    .   .    .     .     .
                 .   .     .     .     .    .   .    .     .     .
                 .   .     .     .     .    .   .    .     .     .
                                The infinite matrix M ∗
                                                 ∗
            The element α r occurs (r + 1) times in M . Consider all the subdeter-
          minants of M which contain the element α r in the bottom right-hand
                      ∗
          corner and whose order n is sufficiently large for them to contain the el-
          ement α 0 but sufficiently small for them not to have either unit or zero
          elements along their secondary diagonals. Denote these determinants by
          B , s =1, 2, 3,.... Some of them are symmetric and unique whereas oth-
           nr
           s
          ers occur in pairs, one of which is the transpose of the other. They are
   223   224   225   226   227   228   229   230   231   232   233