Page 230 - Determinants and Their Applications in Mathematical Physics
P. 230
5.6 Distinct Matrices with Nondistinct Determinants 215
1 2x 1 x
|α 2 | = − 1 x x 2 = − 1 φ 0 (symmetric); (5.6.9)
φ 1
φ 0 φ 1 φ 2 xφ 1 φ 2
(n, r)=(4, 3):
1 1
−2x −3x
1 −x x 1 −2x
2 2
3 ,
3x
1 α 0 α 1 α 2 = − 1 −x x 2 −x
|φ 3 | = −
−xα 1 α 2 α 3 α 0 α 1 α 2 α 3
1 1
2x 3x
1 x 1
2 2
x 2x 3x
1 φ 0 φ 1 φ 2 1 x x x
|α 3 | = − = − 2 3 ; (5.6.10)
xφ 1 φ 2 φ 3 φ 0 φ 1 φ 2 φ 3
(n, r)=(3, 3):
1 −x x
2
φ 1
= α 0 α 1
φ 2 ,
φ 2 φ 3
α 2
α 1 α 2 α 3
1 x x 2
α 1
= φ 0 φ 1
α 2 ; (5.6.11)
α 2 α 3
φ 2
φ 1 φ 2 φ 3
(n, r)=(4, 4):
1 −2x 1 −x
2 2
3x x
2
φ 2 −x α 0 α 1 α 2
1 −x x 3 1
φ 3 ,
= − =
φ 3 φ 4 α 0 α 1 α 2 α 3 −xα 1 α 2 α 3
x 2
α 1 α 2 α 3 α 4 α 2 α 3 α 4
1 1 x
2 2
2x 3x x
2
1 x x 3 1
α 2 x φ 0 φ 1 φ 2
α 3 (5.6.12)
= −
=
α 3 α 4 φ 0 φ 1 φ 2 φ 3 φ 1 φ 2 φ 3
x
x 2
φ 1 φ 2 φ 3 φ 4 φ 2 φ 3 φ 4
The coaxial nature of the determinants B nr is illustrated for the case
s
(n, r)=(6, 6) as follows:
each of the three determinants of order 6
φ 4
= enclosed within overlapping dotted frames
φ 5
φ 5 φ 6
in the following display: