Page 265 - Determinants and Their Applications in Mathematical Physics
P. 265

250   6. Applications of Determinants in Mathematical Physics

                   ij
                 (A ) = −     e c r u A rj  e c s u A ,              (6.4.4)
                                             is
                            r         s

                 2    b r c r A rr  +  e (c r +c s )u A rs  =2  c r ,  (6.4.5)
                    r          r,s                r

                 2    b r c r A A rj  +  e c r u A rj  e c s u A =(c i + c j )A . (6.4.6)
                           ir
                                                                 ij
                                                    is
                    r              r         s
          Put

                                   φ i =  e c s u A .                (6.4.7)
                                               is
                                        s
          Then (6.4.4) and (6.4.6) become
                                        (A ) = −φ i φ j ,            (6.4.8)
                                           ij

                         2    b r c r A A rj  + φ i φ j =(c i + c j )A .  (6.4.9)
                                   ir
                                                         ij
                           r
          Eliminating the φ i φ j terms,

                       ij
                     (A ) +(c i + c j )A =2   b r c r A A ,
                                                   ir
                                     ij
                                                      rj
                                           r
                                    ij

                           e (c i +c j )u A  =2e (c i +c j )u  b r c r A A .  (6.4.10)
                                                          ir
                                                             rj
                                                   r
          Differentiating (6.4.3),


                       (log A) =     e (c i +c j )u A ij
                                 i,j

                               =2    b r c r  e c i u A ir  e c j u A rj
                                   r
                                          i         j
                                          2
                               =2    b r c r φ .                    (6.4.11)
                                          r
                                   r
          Replacing s by r in (6.4.7),

                          e c i u φ i =  e (c i +c r )u A ,
                                              ir
                                   r

                         e c j u  φ i  =2  b r c r e c i u A ir  e c j u A rj
                                    r              j

                                =2     b r c r φ r e c i u A ,
                                                 ir
                                    r


                        φ + c i φ i =2  b r c r φ r A .
                                              ir
                         i
                                    r
          Interchange i and r, multiply by b r c r A , sum over r, and refer to (6.4.9):
                                            rj


                  b r c r A (φ + c r φ r )=2      b r c r A A rj
                       rj
                                                       ir
                           r              b i c i φ i
                r                       i       r
   260   261   262   263   264   265   266   267   268   269   270