Page 266 - Determinants and Their Applications in Mathematical Physics
P. 266

6.4 The Kay–Moses Equation  251

                                   =    b i c i φ i [(c i + c j )A − φ i φ j ]
                                                      ij
                                      i

                                   =    b r c r φ r [(c r + c j )A rj  − φ r φ j ],
                                      r

                          b r c r A φ =  b r c r φ r [c j A rj  − φ r φ j ],  (6.4.12)
                               rj
                                  r
                        r             r
                                                                  2

                    b r c r A (φ − φ r )=  b r c r φ r (c j − 1)A rj  −  b r c r φ φ j .
                         rj
                            r                                     r
                  r                   r                    r
          Multiply by e c j u /(c j − 1), sum over j, and refer to (6.4.7):

                        rj c j u
                   b r c r A e  (φ − φ r )     2           2     e c j u
                                     =     b r c r φ −  b r c r φ
                               r                                   φ j
                         c j − 1               r           r    c j − 1
                j,r                      r          r        j
                                                 2
                                      = F    b r c r φ
                                                 r
                                           r
                                        1

                                      = F(log A) ,                  (6.4.13)
                                        2
          where
                                          e c j u
                               F =1 −        φ j
                                          c j − 1
                                       j
                                          e (c i +c j )u A ij
                                 =1 −                .              (6.4.14)
                                            c j − 1
                                       i,j
          Differentiate and refer to (6.4.9):
                                           e c j u A
                                                rj

                         F = −2                      e c i u A ir
                                           c j − 1
                                   b r c r
                                 r
                                        j          i
                                           φ r e c j u A rj

                           = −2                     .               (6.4.15)
                                            c j − 1
                                   b r c r
                                 r      j
            Differentiate again and refer to (6.4.8):
                                     e c j u     2
                   F =2                    φ φ j − c j φ r A rj  − φ A rj


                                    c j − 1  r              r
                             b r c r
                           r
                                  j
                      = P − Q − R,                                  (6.4.16)
          where
                           e c j u       2
                  P =2         φ j  b r c r φ
                           c j − 1       r
                         j        r
                    =(1 − F)(log A)                                 (6.4.17)
                           b r c r c j φ r e c j u A rj
                  Q =2
                                c j − 1
                        j,r
   261   262   263   264   265   266   267   268   269   270   271