Page 267 - Determinants and Their Applications in Mathematical Physics
P. 267

252   6. Applications of Determinants in Mathematical Physics

                                                         φ r e c j u A rj
                    =2              e c j u A rj  +2
                                                           c j − 1
                           b r c r φ r
                                                  b r c r
                         r        j            r      j
                                2
                    =2     b r c r φ − F
                                r
                         r


                    = (log A) − F ,                                 (6.4.18)
                            e  c j u

                  R =2              b r c r φ A rj
                           c j − 1       r
                         j        r
                            e  c j u
                    =2              b r c r φ r [c j A rj  − φ r φ j ]
                           c j − 1
                         j        r
                    = Q − P.                                        (6.4.19)
          Hence, eliminating P, Q, and R from (6.4.16)–(6.4.19),
                              2
                             d F    dF

                                 − 2    +2F(log A) =0.              (6.4.20)
                             du 2   du
          Put
                                      F = e y.                      (6.4.21)
                                           u
          Then, (6.4.20) is transformed into
                               2
                              d y         d 2
                                 − y +2y    (log A)=0.              (6.4.22)
                              du 2       du 2
                               2
          Finally, put u = ωεx,(ω = −1). Then, (6.4.22) is transformed into
                              2
                             d y   2       d 2
                                + ε y +2y    (log A)=0,
                             dx 2         dx 2
          which is identical with (6.4.1), the Kay–Moses equation. This completes
          the proof of the theorem.

          6.5 The Toda Equations

          6.5.1  The First-Order Toda Equation

          Define two Hankel determinants (Section 4.8) A n and B n as follows:
                            A n = |φ m | n ,  0 ≤ m ≤ 2n − 2,
                            B n = |φ m | n ,  1 ≤ m ≤ 2n − 1,
                            A 0 = B 0 =1.                            (6.5.1)
          The algebraic identities
                            (n+1)      (n+1)
                        A n B    − B n A    + A n+1 B n−1 =0,        (6.5.2)
                            n+1,n      n+1,n
                              (n+1)      (n)
                        B n−1 A    − A n B n,n−1  + A n−1 B n = 0    (6.5.3)
                              n+1,n
   262   263   264   265   266   267   268   269   270   271   272