Page 322 - Determinants and Their Applications in Mathematical Physics
P. 322

A.2 Permutations  307





                                 j       S ij
                                     1   2   3   4   5
                              i
                              1      1
                              2      1   1
                              3      1   3   1
                              4      1   7   6   1
                              5      1  15  25   10  1
          Further values are given by Abramowitz and Stegun. Stirling numbers ap-
          pear in Section 5.6.3 on distinct matrices with nondistinct determinants
          and in Appendix A.6.
            The matrices s n (x) and S n (x) are defined as follows:
                                      1
                                                                
                                    −x      1                   
                                    2x 2   −3x     1            
                                   

                s n (x)= s ij x i−j     3      2                  ,
                                                                 
                                    −6x    11x    −6x    1
                                 = 
                               n                                 
                                     24x   −50x    35x   −10x 1
                                       4       3     2          
                                     ...............................
                                                                  n
                                     1
                                                          
                                    x    1                
                                    x 2  3x    1          
                                   
                                                           
                S n (x)= S ij x i−j  =   3  2              .
                                    x   7x     6x    1
                               n                           
                                     x   15x   25x   10x 1
                                     4     3     2        
                                     .........................
                                                             n
          A.2    Permutations
          Inversions, the Permutation Symbol
          The first n positive integers 1, 2, 3,...,n, can be arranged in a linear se-
          quence in n! ways. For example, the first three integers can be arranged in
          3! = 6 ways, namely
                                      123
                                      132
                                      213
                                      231
                                      312
                                      321
          Let N n denote the set of the first n integers arranged in ascending order of
          magnitude,
                                       -         .
                                  N n = 123 ··· n ,
   317   318   319   320   321   322   323   324   325   326   327