Page 318 - Determinants and Their Applications in Mathematical Physics
P. 318

6.11 The Relativistic Toda Equation — A Brief Note  303

                                   +            ct
                               x = t  1 − a = √      .              (6.11.4)
                                          2
                                               1+ c 2
          Equations (6.11.1)–(6.11.3) are satisfied by the functions
                                  U n = |u i,n+j−1 | m ,
                                  V n = |v i,n+j−1 | m ,
                                  W n = |w i,n+j−1 | m ,            (6.11.5)
          where the determinants are Casoratians (Section 4.14) of arbitrary order
          m whose elements are given by
                                 u ij = F ij + G ij ,
                                              1
                                 v ij = a i F ij +  G ij ,
                                       1     a i
                                 w ij =  F ij + a i G ij ,          (6.11.6)
          where                       a i

                                        1
                                    	      
 j
                              F ij =          exp(ξ i ),
                                     a i − a

                                             j
                              G ij =    a i    exp(η i ),
                                    x  1 − aa i
                                ξ i =  + b i ,
                                    a i
                               η i = a i x + c i ,                  (6.11.7)
          and where the a i , b i , and c i are arbitrary constants.
   313   314   315   316   317   318   319   320   321   322   323