Page 316 - Determinants and Their Applications in Mathematical Physics
P. 316

6.10 The Einstein and Ernst Equations  301

          Hence,
                                       2n−1

                                    2              G
                                =          V 2n (c)   ,
                            P n
                           P n−1    ρ              F
                                         2n−1

                           Q n+1      2              F  ∗
                                = −          V 2n (c)              (6.10.61)
                                      ρ              G ∗
                            Q n

                                                 F  ∗
                                     2n−1
                              ζ + = −2   V 2n (c)    ,
                                                 G ∗

                                               G
                                   2n−1
                              ζ − =2   V 2n (c)    .               (6.10.62)
                                               F
          Finally, applying the B¨acklund transformation ε in Appendix A.12 with
          b =2 2n−1 V 2n (c),
                                     ζ − − 2 2n−1 V 2n (c)

                                ζ =
                                 +
                                     ζ − +2 2n−1 V 2n (c)
                                     1 − (F/G)
                                  =           .
                                     1+(F/G)
          Similarly,
                                      1 − (F /G )
                                            ∗
                                                ∗

                                 ζ =              .                (6.10.63)
                                  −         ∗   ∗
                                      1+(F /G )
          Discarding the primes, ζ − = ζ . Hence, referring to (6.2.13),
                                    ∗
                                    +
                                      1
                          1
                      φ = (ζ + + ζ − )= (ζ + + ζ ),
                                              ∗
                          2           2       +
                           1            1              2
                      ψ =   (ζ + − ζ − )=  (ζ + − ζ )(ω = −1),     (6.10.64)
                                                 ∗
                                                 +
                          2ω            2ω
          which are both real. It follows that these solutions are physically significant.
          Exercise. Prove the following identities:
                                 A 2n = α n (GG − FF ),
                                                    ∗
                                             ∗
                                           ∗
                               A 2n+1 = β n F G,
                               A 2n−1 = β n−1 FG ,
                                              ∗
                               (2n+1)        ∗      ∗
                              A 1,2n+1  = α n (GG + FF ),
          where
                                       n 2n(n−1)
                                  (−1) 2       V  2(n−1)
                             α n =              2n    ,
                                      ρ 2n(n−1)  2n    ε i
                                             i=1
                                            2  2n−1
                                  (−1) n−1 2n  V
                                          2
                             β n =            2n   .
                                     ρ 2n 2 −1  2n    ε ∗
                                               i
                                           i=1
   311   312   313   314   315   316   317   318   319   320   321