Page 312 - Determinants and Their Applications in Mathematical Physics
P. 312

6.10 The Einstein and Ernst Equations  297

          Proof. Proof of (a). Denote the determinant on the left by W m .

                                            2n
                                                  i+j−2
                             w i+j−2 + w i+j =  y k x  ,
                                                  k
                                            k=1
          where
                                y k =(−1) k+1 ε k M k (c).         (6.10.33)
          Hence, applying the lemma in Section 4.1.7 with N → 2n and n → m,

                               2n

                                 y k x
                                    i+j−2
                       W m =
                                    k

                              k=1

                                 2n          m
                                                 r−1     j−1
                           =                   x       x     ,
                                                 k r   k i
                                        Y m
                                                           m
                             k 1 ,k 2 ,...,k m =1  r=2
          where
                                          m

                                    Y m =    y k r .               (6.10.34)
                                         r=1
          Hence, applying Identity 4 in Appendix A.3,

                                   k 1 ,k 2 ,...k m
                   1                             r−1
                          2n
                                             m
            W m =                               x     V (x j 1  ,x j 2  ,...,x j m ).
                   m!           Y m              j r
                     k 1 ,k 2 ,...,k m =1  j 1 ,j 2 ,...,j m  r=2
                                                                   (6.10.35)
            Applying Theorem (b) in Section 4.1.9 on Vandermondian identities,
                       1               -                 . 2
                              2n
                W m =               Y m V (x k 1  ,x k 2  ,...,x k m )  .  (6.10.36)
                      m!
                         k 1 ,k 2 ,...,k m =1
          Due to the presence of the squared Vandermondian factor, the conditions of
          Identity 3 in Appendix A.3 with N → 2n are satisfied. Also, eliminating the
          x’s using (6.10.26) and (6.10.28) and referring to Exercise 3 in Section 4.1.2,
           -                   . 2   −m(m−1)  -               . 2
                              )   = ρ                        )  . (6.10.37)
             (V (x k 1  ,x k 2  ,...,x k m   V (c k 1  ,c k 2  ,...,c k m
          Hence,
                                             -
           W m = ρ −m(m−1)                Y m V (c k 1  ,c k 2  ,...,c k m ) . 2 . (6.10.38)
                          1≤k 1 <k 2 <...<k m ≤2n
          From (6.10.33) and (6.10.34),
                                             m

                                                   (c),
                                       K
                                               M k r
                              Y m =(−1) E m
                                            r=1
   307   308   309   310   311   312   313   314   315   316   317