Page 313 - Determinants and Their Applications in Mathematical Physics
P. 313

298   6. Applications of Determinants in Mathematical Physics

          where
                                        m

                                  E m =    ε k r ,
                                        r=1
                                        m

                                   K =    (k r − 1).               (6.10.39)
                                        r=1
          Applying Theorem (c) in Section 4.1.8 on Vandermondian identities,
                                                         m−1
                            V (c k m+1  ,c k m+2  ,...,c k 2n ){V 2n (c)}
                                                              .    (6.10.40)
                       K
                                                    )
              Y m =(−1) E m
                                    V (c k 1  ,c k 2  ,...,c k m
          Hence,
                                     m−1
                        (−1) {V 2n (c)}
                            K
                  W m =
                             ρ m(m−1)
                                         1≤k 1 <k 2 <...<k m ≤2n
                                                                 ). (6.10.41)
                        ·E m V (c k 1  ,c k 2  ,...,c k m  )V (c k m+1  ,c k m+2  ,...,c k 2n
                                                           (m)
            Using the Laplace formula (Section 3.3) to expand H  (ε) by the first
                                                          2n
          m rows and the remaining (2n − m) rows and referring to the exercise at
          the end of Section 4.1.8,
                (m)
              H    (ε)=                 N 12···m;k 1 ,k 2 ,...,k m  A 12···m;k 1 ,k 2 ,...,k m ,
                2n
                        1≤k 1 <k 2 <···<k m ≤2n
                                                                   (6.10.42)
          where
                                                        ),
                   N 12···m;k 1 ,k 2 ,...,k m  = E m V (c k 1  ,c k 2  ,...,c k m
                                         R
                    A 12···m;k 1 ,k 2 ,...,k m  =(−1) M 12···m;k 1 ,k 2 ,...,k m
                                         R
                                   =(−1) V (c k m+1  ,c k m+2  ,...,c k 2n ),  (6.10.43)
          where M is the unsigned minor associated with the cofactor A and R is
          the sum of their parameters. Referring to (6.10.39),
                                                m

                                    1
                               R = m(m +1)+
                                    2              k r
                                                r=1
                                        1
                                 = K + m(m − 1).                   (6.10.44)
                                        2
          Hence,
                  (m)
                H    (ε)=(−1) R                 E m V (c k 1 ,c k 2  ,...,c k m )
                  2n
                                1≤k 1 <k 2 <···<k m ≤2n
                                               )
                          ·V (c k m+1  ,c k m+2  ,...,c k 2n
                              2 m(m−1)/2
                          (−ρ )
                        =              W m ,                       (6.10.45)
                           {V 2n (c)} m−1
          which proves part (a) of the theorem. Part (b) can be proved in a similar
          manner.
   308   309   310   311   312   313   314   315   316   317   318