Page 314 - Determinants and Their Applications in Mathematical Physics
P. 314

6.10 The Einstein and Ernst Equations  299

          6.10.5  Physically Significant Solutions
          From the theorem in Section 6.10.2 on the intermediate solution,
                                  ρ 2n−1
                          φ 2n+1 =     A 2n  ,
                                   A 2n−1
                                  ωρ 2n−1 A (2n+1)
                                         1,2n+1
                                                   2
                          ψ 2n+1 =               (ω = −1).         (6.10.46)
                                     A 2n−1
          Hence the functions ζ + and ζ − introduced in Section 6.2.8 can be expressed
          as follows:
                             ζ + = φ 2n+1 + ωψ 2n+1
                                  ρ 2n−1 (A 2n − A (2n+1) )
                                               1,2n+1
                                =                     ,            (6.10.47)
                                         A 2n−1
                             ζ − = φ 2n+1 − ωψ 2n+1
                                  ρ 2n−1 (A 2n + A (2n+1) )
                                               1,2n+1
                                =                     .            (6.10.48)
                                         A 2n−1
          It is shown in Section 4.5.2 on symmetric Toeplitz determinants that if
          A n = |t |i−j| | n , then
                              A 2n−1 =2P n−1 Q n ,
                                A 2n = P n Q n + P n−1 Q n+1 ,
                              (2n+1)
                             A      = P n Q n − P n−1 Q n+1 ,      (6.10.49)
                              1,2n+1
          where

                               P n =  1
                                     2  t |i−j| − t i+j  n

                               Q n =  1   t |i−j| + t i+j−2 .      (6.10.50)

                                     2
                                                   n
          Hence,
                                       ρ 2n−1 Q n+1
                                  ζ + =          ,
                                           Q n
                                       ρ 2n−1
                                  ζ − =     P n .                  (6.10.51)
                                         P n−1
                                          2
          In the present problem, t r = ω u r (ω = −1), where u r is a solution of the
                                    r
          coupled equations (6.10.3) and (6.10.4). In order to obtain the Neugebauer
          solutions, it is necessary first to choose the solution given by equations
          (A.11.8) and (A.11.9) in Appendix A.11, namely
                                  e j f r (x j )
                               2n

                    u r =(−1) r   3       ,  x j =  z + c j  ,     (6.10.52)
                              j=1   1+ x 2          ρ
                                        j
          and then to choose
                               e j =(−1) j−1 M j (c)e ωθ j .       (6.10.53)
   309   310   311   312   313   314   315   316   317   318   319