Page 325 - Determinants and Their Applications in Mathematical Physics
P. 325

310   Appendix

                                1   2  ... (i − 1)(i +1) ... (m − 1)
                     i+m+1
              =(−1)       sgn                                            ,
                               r 3  r 4  ...    ...      ...
                                                                     m−2
                                                               r m
          where 1 ≤ r k ≤ m − 2, r k  = i, and 3 ≤ k ≤ m.
          Proof. The cases i = 1 and i> 1 are considered separately. When i =1,
          then 2 ≤ r k ≤ m − 1. Let p denote the number of inversions required to
          transform the set {r 3 r 4 ...r m } m−2 into the set {23 ... (m − 1)} m−2 , that
          is,

                                    2   3  ... (m − 1)
                       (−1) = sgn                           .
                           p
                                    r 3  r 4  ...
                                                        m−2
                                                  r m
          Hence

                      1   2  3   4   ...  m
                 sgn
                      i  m r 3   r 4
                                     ... r m
                                             m

                                  1  2   3 4   ...   m
                     =(−1) sgn
                            p
                                  i  m 23      ... (m − 1)
                                                           m

                                       1234 ... (m − 1)m
                            p+m−2
                     =(−1)        sgn
                                       1234 ... (m − 1)m
                                                                 m
                     =(−1)  p+m−2

                                     2   3  ... (m − 1)
                            m−2
                     =(−1)     sgn                           ,
                                     r 3  r 4  ...
                                                         m−2
                                                   r m
          which proves the lemma when i =1.
            When i> 1, let q denote the number of inversions required to transform
          the set {r 3 r 4 ··· r m } m−2 into the set {12 ··· (i − 1)(i +1) ··· (m − 1)} m−2 .
          Then,

                           1   2   ... (i − 1)(i +1) ... (m − 1)
              (−1) = sgn                                             .
                  q
                           r 3  r 4  ...   ...      ...
                                                                 m−2
                                                           r m
          Hence,

               1  2   3   4  ···  m
          sgn
               i  m r 3   r 4
                             ··· r m
                                      m

                         1  2  3  4 ···       ···      ··· (m − 1)     m
            =(−1) sgn
                  q
                         i  m 12     ··· (i − 1)(i +1) ··· (m − 2)  (m − 1)
                                                                             m

                           1234        ···      ···      ··· (m − 1) m
            =(−1) q+m  sgn
                           i  123      ··· (i − 1)(i +1) ··· (m − 1) m
                                                                         m

                               1234        ··· m
                  q+m+i−1
            =(−1)         sgn
                               1234        ··· m
                                                   m
            =(−1) q+m+i−1

                              1  2   ··· (i − 1)(i +1) ··· (m − 1)
                  m+i−1
            =(−1)       sgn                                            ,
                             r 3  r 4  ···   ···      ···
                                                                   m−2
                                                             r m
   320   321   322   323   324   325   326   327   328   329   330