Page 330 - Determinants and Their Applications in Mathematical Physics
P. 330

A.4 Appell Polynomials  315

           TABLE A.1. Particular Appell Polynomials and Their Generating Functions


                                               r
                                                           m !
                                          ∞ !
                      α r          G(t)=    α r t  φ m(x)=     m  α rx m−r
                                             r!
                                         r=0              r=0  r
           1          δ r                1                  x m
                                          t                     m
           2           1                 e                (1 + x)
           3           r                te t            m(1 + x) m−1

                                         t
                       1                e −1            (1+x) m+1 −x m+1
           4          r+1                t                  m+1
                     (−1) r           √               m
                                                           1
           5           r!          J 0(2 t) (Bessel)  x L m  x  (Laguerre)
                          r
                      (−1) (2r)!
               α 2r  =                   −t 2         −m
                         2r
           6            2 r!            e            2  H m(x) (Hermite)
               α 2r+1 =0
                                         t
           7                            e t −1        B m(x) (Bernoulli)
           8                             2              E m(x) (Euler)
                                        e t +1
          Note: Further examples are given by Carlson.





            The first four polynomials are

                          φ 0 (x)= α 0 ,

                          φ 1 (x)= α 0 x + α 1 ,
                                     2
                          φ 2 (x)= α 0 x +2α 1 x + α 2 ,
                                     3
                                             2
                          φ 3 (x)= α 0 x +3α 1 x +3α 2 x + α 3 .    (A.4.7)
          Particular cases of these polynomials and their generating functions are
          given in Table 1. When expressed in matrix form, equations (A.4.7) become

                          φ 0 (x)    1                 α 0
                                                    
                                    x    1
                          φ 1 (x)                  α 1 
                          φ 2 (x)  =  x 2  2x  1    α 2  .    (A.4.8)
                                                    
                                                         
                         
                               
                                   
                          φ 3 (x)    x   3x   3x 1     α 3
                                   3    2           
                           ···       ................  ···
   325   326   327   328   329   330   331   332   333   334   335