Page 334 - Determinants and Their Applications in Mathematical Physics
P. 334

A.4 Appell Polynomials  319

          These polynomials can be displayed in matrix form as follows:
            Let
                                                     
                                     u 00  u 01  u 02  ···
                                    u 10  u 11  u 12  ··· 
                                                       .
                            U(x)= 
                                     u 20  u 21  u 22  ···
                                     ···  ···  ···  ···
          Then,
                                       xQ
                               U(x)= e   U(0) e xQ T  .
          Hence,
                                     −xQ         −xQ T

                             U(0) = e    U(x) e       ,
          that is,

                         j
                      i
                              i   j
                α ij =               u rs (−x) i+j−r−s ,  i, j =0, 1, 2,... .
                             r    s
                     r=0 s=0
          Other solutions of (A.4.12) can be expressed in terms of simple Appell
          polynomials; for example,
                                 u ij = φ i φ j ,


                                 u ij =     φ i  φ j    .
                                       φ i+1  φ j+1

          Solutions of the three-parameter Appell equation, namely
                          u    = iu i−1,j,k + ju i,j−1,k + ku ij,k−1 ,
                           ijk
          include

                             u ijk = φ i φ j φ k ,


                                      φ i  φ j   φ k
                             u ijk = φ i+1  φ j+1      .

                                                φ k+1
                                    φ i+2  φ j+2  φ k+2

          Carlson has studied polynomials φ m (x,y,z,...) which satisfy the relation
                                                          ∂
                  (D x + D y + D z + ···)φ m = mφ m−1 ,  D x =  , etc.,
                                                          ∂x
          and Carlitz has studied polynomials φ mnp... (x,y,z,...) which satisfy the
          relations

                              D x (φ mnp... )= mφ m−1,np... ,
                              D y (φ mnp... )= nφ m,n−1,p... ,
                              D z (φ mnp... )= pφ mn,p−1,... .
   329   330   331   332   333   334   335   336   337   338   339