Page 339 - Determinants and Their Applications in Mathematical Physics
P. 339

324   Appendix

          It follows from (A.6.2) that
                                xψ    = ψ m+1 ,  m ≥ 0.             (A.6.4)
                                  m
          The formula
                                ∆ ψ 0 = xψ m ,  m > 0,
                                 m
          is proved in the section on differences in Appendix A.8.
            Other formulas for ψ m include the following:

                          m
                            (−1) m+r r! S m+1,r+1
                   ψ m =                      ,  m ≥ 0 (Comtet),    (A.6.5)
                                (1 − x) r+1
                         r=0
                           x      (−1) m+r
                               m
                   ψ m =                 r! S mr  ,  m ≥ 0,         (A.6.6)
                         1 − x       (1 − x) r
                              r=1
          where the S mr are Stirling numbers of the second kind (Appendix A.1).
                               1                 ∂

                 ψ m = D  r              ,  D =      (Zeitlin).     (A.6.7)
                             1 − xe u            ∂u
                                      u=0
          Let
                                             1
                                   t = φ 0 =    .
                                           1 − x
          Then,
                          ψ 0 = −(1 − t),
                          ψ 1 = −t + t 2
                             = −t(1 − t),
                                    2
                          ψ 2 = t − 3t +2t 3
                             = t(1 − t)(1 − 2t),
                                     2
                                           3
                          ψ 3 = −t +7t − 12t +6t 4
                                                 2
                             = −t(1 − t)(1 − 6t +6t ),
                                                 4
                                           3
                                     2
                          ψ 4 = t − 15t +50t − 60t +24t 5
                                                 2
                                                       3
                             = t(1 − t)(1 − 14t +36t − 24t ).
            The function ψ m satisfies the linear recurrence relations

                                          m
                                              m

                              ψ m = x 1+          ψ r ,  m ≥ 0      (A.6.8)
                                               r
                                         r=0

                                     x       m−1 	 m

                                 =        1+           ψ r ,  m ≥ 1 (A.6.9)
                                   1 − x           r
                                             r=0
                    m 	   
         m
                        m                       m
                 x          ψ m+r =   (−1) m+r
                        r                       r   ψ m+r
                   r=0             r=0
                                 =∆ ψ m .                          (A.6.10)
                                     m
   334   335   336   337   338   339   340   341   342   343   344