Page 341 - Determinants and Their Applications in Mathematical Physics
P. 341

326   Appendix
                          ∂V
                              = V (V +1 − x)
                          ∂u
          from which it follows that S m satisfies the nonlinear recurrence relation
                                            m
                                                m
                        S m+1 =(1 − x)S m +         S r S m−r .
                                                 r
                                           r=0
          It then follows that
                                            m
                                                 m
                        ∆ψ m = ψ m+1 − ψ m =         ψ r ψ m−r .
                                                 r
                                            r=0

          A.7    Symmetric Polynomials

                                                    (n)
                                                       in the n variables x i ,
          Let the function f n (x) and the polynomials σ p
          1 ≤ i ≤ n, be defined as follows:
                                n            n

                        f n (x)=  (x − x i )=  (−1) σ  x   .        (A.7.1)
                                                   p (n) n−p
                                                     p
                               i=1          p=0
          Examples

                                (n)
                               σ 0  =1,
                                      n
                                (n)
                               σ 1  =   x r ,
                                     r=1
                                (n)
                               σ   =        x r x s ,
                                2
                                     1≤r<s≤n
                                (n)
                               σ 3  =         x r x s x t ,
                                ...  1≤r<s<t≤n
                                     ............
                               σ (n)  = x 1 x 2 x 3 ...x n .
                                n
          These polynomials are known as symmetric polynomials.
                                                    (n)
            Let the function g nr (x) and the polynomials σ rs in the (n−1) variables
          x i ,1 ≤ i ≤ n, i  = r, be defined as follows:
                                         n−1
                                 f n (x)
                        g nr (x)=      =    (−1) σ   x     ,        (A.7.2)
                                                s (n) n−1−s
                                                  rs
                                         s=0
                                 x − x r
                        g nn (x)= f n−1 (x)                         (A.7.3)
          for all values of x. Hence,
                                    σ (n)  = σ (n−1) .              (A.7.4)
                                     ns    s
   336   337   338   339   340   341   342   343   344   345   346