Page 342 - Determinants and Their Applications in Mathematical Physics
P. 342

A.7 Symmetric Polynomials  327

          Also,
                                 g nj (x i )=0,  j  = i.            (A.7.5)


          Examples

                               (3)
                              σ   = x 1 x 2 + x 1 x 3 + x 2 x 3 ,
                               2
                               (n)
                              σ   =1,   1 ≤ r ≤ n,
                               r0
                               (3)
                              σ   = x 1 + x 3 ,
                               21
                               (3)
                              σ   = x 1 x 3 ,
                               22
                               (4)
                              σ   = x 1 + x 2 + x 4 ,
                               31
                               (4)
                              σ   = x 1 x 2 + x 1 x 4 + x 2 x 4 ,
                               32
                               (4)
                              σ   = x 1 x 2 x 4 .
                               33
          Lemma.
                                      s

                               σ (n)  =  σ (n) (−x r ) s−p .
                                rs        p
                                     p=0
          Proof. Since
                                        	      
 −1
                                      1       x
                             g r (x)= −  x r  1 −  x r  f(x)
                                           ∞
                                     f(x)      x  
 q
                                  = −               ,
                                          q=0  x r
                                      x r
          it follows that
                   n−1                     n  ∞
                                                     p (n) n−p+q
                                                 (−1) σ p x
                                 x
                      (−1) s+1 (n) n−1−s  =                     .
                             σ
                              rs                       q+1
                   s=0                    p=0 q=0     x r
          Equating coefficients of x n−1−s ,
                                         n

                                 σ
                          (−1) s+1 (n)  =   (−1) σ   x   .
                                                p (n) s−p
                                  rs              p   r
                                        p=s+1
          Hence
                                 s                 n

                   (−1) s+1 (n)  +  (−1) σ  x   =    (−1) σ  x
                          σ
                                       p (n) s−p
                                                         p (n) s−p
                           rs            p  r              p  r
                                p=0               p=0
                                                = x s−n f(x r )
                                                   r
                                                =0.
          The lemma follows.
            Symmetric polynomials appear in Section 4.1.2 on Vandermondians.
   337   338   339   340   341   342   343   344   345   346   347